Skip to main content

Advertisement

Log in

Plant invasion alters the physico-chemical dynamics of soil system: insights from invasive Leucanthemum vulgare in the Indian Himalaya

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Understanding the impact of plant invasions on the terrestrial ecosystems, particularly below-ground soil system dynamics can be vital for successful management and restoration of invaded landscapes. Here, we report the impacts of a global plant invader, Leucanthemum vulgare Lam. (ox-eye daisy), on the key physico-chemical soil properties across four sites selected along an altitudinal gradient (1600–2550 m) in Kashmir Himalaya, India. At each site, two types of spatially separated but environmentally similar sampling plots: invaded (IN) and uninvaded (UN) were selected for soil sampling. The results revealed that invasion by L. vulgare had a significant impact on key soil properties in the IN plots. The soil pH, water content, organic carbon and total nitrogen were significantly higher in the IN plots as compared with the UN plots. In contrast, the electrical conductivity, phosphorous and micronutrients, viz. iron, copper, manganese and zinc, were significantly lower in the IN plots as compared with the UN plots. These changes in the soil system dynamics associated with L. vulgare invasion were consistent across all the sites. Also, among the sites, soil properties of low-altitude site (1600 m) were different from the rest of the sampling sites. Overall, the results of the present study indicate that L. vulgare, by altering key properties of the soil system, is likely to influence nutrient cycling processes and facilitates positive feedback for itself. Furthermore, the research insights from this study have wide management implications in the effective ecological restoration of the invaded landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addis, H., Klik, A., Oweis, T., & Strohmeier, S. (2016). Linking selected soil properties to land use and hillslope - a watershed case study in the Ethiopian highlands. Soil & Water Research, 11(3), 163–171.

    Google Scholar 

  • Afreen, T., Srivastava, P., Singh, H., & Singh, J. S. (2017). Effect of invasion by Hyptis suaveolens on plant diversity and selected soil properties of a constructed tropical grassland. Journal of Plant Ecology, 11(5), 751–760.

    Google Scholar 

  • Badía, D., Ruiz, A., Girona, A., Martí, C., Casanova, J., Ibarra, P., & Zufiaurre, R. (2016). The influence of elevation on soil properties and forest litter in the siliceous Moncayo Massif, SW Europe. Journal of Mountain Science, 13(12), 2155–2169.

    Google Scholar 

  • Bai, W., Kong, L., & Guo, A. (2013). Effects of physical properties on electrical conductivity of compacted lateritic soil. Journal of Rock Mechanics and Geotechnical Engineering, 5(5), 406–411.

    Google Scholar 

  • Baranova, B., FazEkašová, D., & Manko, P. (2017). Variations of selected soil properties in the grass fields invaded and uninvaded by invasive goldenrod (Solidago canadensis L.). Ekológia (Bratislava), 36(2), 101–111.

    Google Scholar 

  • Barney, J. N. (2016). Invasive plant management must be driven by a holistic understanding of invader impacts. Applied Vegetation Science, 19(2), 183–184.

    Google Scholar 

  • Barney, J. N., Tekiela, D., Dollete, E., & Tomasek, B. (2013). What is the “real” impact of invasive plant species? Frontiers in Ecology and the Environment, 11(6), 322–329.

    Google Scholar 

  • Barney, J. N., Tekiela, D. R., Barrios-Garcia, M. N., Dimarco, R. D., Hufbauer, R. A., Leipzig-Scott, P., Nuñez, M. A., Pauchard, A., Pyšek, P., Vítková, M., & Maxwell, B. D. (2015). Global Invader Impact Network (GIIN): toward standardized evaluation of the ecological impacts of invasive plants. Ecology and Evolution, 5(14), 2878–2889.

    Google Scholar 

  • Bhat, Z. A., Padder, S. A., Ganaie, A. Q., Dar, N. A., Rehman, H. U., & Wani, M. Y. (2017). Correlation of available nutrients with physico-chemical properties and nutrient content of grape orchards of Kashmir. Journal of Pharmacognosy and Phytochemistry, 6(2), 181–185.

    CAS  Google Scholar 

  • Bolton, H., Smith, J. L., & Link, S. O. (1993). Soil microbial biomass and activity of a disturbed and undisturbed shrub-steppe ecosystem. Soil Science Society of America, 54(5), 887–891.

    Google Scholar 

  • Brevik, E. C., Fenton, T. E., & Lazari, A. (2006). Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precision Agriculture, 7(6), 393–404.

    Google Scholar 

  • Chen, X., Liu, Y., Liu, H., Wang, H., Yang, D., & Huangfu, C. (2015a). Impacts of four invasive asteraceae on soil physico-chemical properties and AM fungi community. American Journal of Plant Sciences, 6(17), 2734–2743.

    CAS  Google Scholar 

  • Chen, X., Wang, R., Cao, Q., Zhang, H., Ge, X., & Liu, J. (2015b). The relationship between the distribution of invasive plant Alternanthera philoxeroides and soil properties is scale-dependent. Polish Journal of Environmental Studies, 24(5), 1931–1938.

    Google Scholar 

  • Christian, J. M., & Wilson, S. D. (1999). Long-term ecosystem impacts of an introduced grass in the northern Great Plains. Ecology, 80(7), 2397–2407.

    Google Scholar 

  • Corbin, J. D., & D’Antonio, C. M. (2012). Gone but not forgotten? Invasive plants’ legacies on community and ecosystem properties. Invasive Plant Science and Management, 5(1), 117–124.

    Google Scholar 

  • Cuda, J., Vıtkova, M., Albrechtova, M., Guo, W.-Y., Barney, J. N., & Pyšek, P. (2017). Invasive herb Impatiens glandulifera has minimal impact on multiple components of temperate forest ecosystem function. Biological Invasions, 19(10), 3051–3066.

    Google Scholar 

  • Cutway, H. B. (2017). Effects of long-term manual invasive plant removal on forest understory composition. Natural Areas Journal, 37(4), 530–539.

    Google Scholar 

  • Dar, G. H., & Khuroo, A. A. (2013). Floristic diversity in the Kashmir Himalaya: progress, problems and prospects. Sains Malaysiana, 42(10), 1377–1386.

    Google Scholar 

  • Dassonville, N., Vanderhoeven, S., Vanparys, V., Hayez, M., Gruber, W., & Meerts, P. (2008). Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia, 157(1), 131–140.

    Google Scholar 

  • Ehrenfeld, J. G. (2003). Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6(6), 503–523.

    CAS  Google Scholar 

  • Ehrenfeld, J., Kourtev, P., & Huang, W. (2001). Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecological Applications, 11(5), 1287–1300.

    Google Scholar 

  • Eviner, V. T., & Hawkes, C. V. (2008). Embracing variability in the application of plant-soil interactions to the restoration of communities and ecosystems. Restoration Ecology, 16(1), 713–729.

    Google Scholar 

  • Eviner, V. T., Hoskinson, S. A., & Hawkes, C. V. (2010). Ecosystem impacts of exotic plants can feed back to increase invasion in western US rangelands. Rangelands, 32(1), 21–31.

    Google Scholar 

  • Fan, L., Chen, Y., Yuan, J., & Yang, Z. (2010). The effect of Lantana camara Linn. invasion on soil chemical and microbiological properties and plant biomass accumulation in southern China. Geoderma, 154(3-4), 370–378.

    CAS  Google Scholar 

  • FitzPatrick, E. A. (1983). Soils: their formation, classification and distribution. New York: Longman.

    Google Scholar 

  • Garten, C. T., & Ashwood, T. L. (2002). Landscape level differences in soil carbon and nitrogen: implications for soil carbon sequestration. Global Biogeochemical Cycles, 16(4), 1–14.

    Google Scholar 

  • Gerber, E., Krebs, C., Murrell, C., Moretti, M., Rocklin, R., & Schaffner, U. (2008). Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biological Conservation, 141(3), 646–654.

    Google Scholar 

  • Gioria, M., Pyšek, P., & Lenka, M. (2012). Soil seed banks in plant invasions: promoting species invasiveness and long-term impact on plant community dynamics. Preslia, 84, 327–350.

    Google Scholar 

  • Griffiths, R., Madritch, M., & Swanson, A. (2009). The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): implications for the effects of climate change on soil properties. Forest Ecology and Management, 257(1), 1–7.

    Google Scholar 

  • Guttman, L. (1954). Some necessary conditions for common factor analysis. Psychometrika, 19, 149–161.

    Google Scholar 

  • Harris, J. (2009). Soil microbial communities and restoration ecology: facilitators or followers? Science, 325(5940), 573–574.

    CAS  Google Scholar 

  • He, X., Hou, E., Liu, Y., & Wen, D. (2016). Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Scientific Reports, 7(6), 242–261.

    Google Scholar 

  • Hejda, M., & Pyšek, P. (2006). What is the impact of Impatiens glandulifera on species diversity of invaded riparian vegetation? Biological Conservation, 132(2), 143–152.

    Google Scholar 

  • Hejda, M., Pyšek, P., & Jarosik, V. (2009). Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology, 97(3), 393–403.

    Google Scholar 

  • Husain, M. (2002). Geography of Jammu and Kashmir. New Delhi: Rajesh Publications.

    Google Scholar 

  • Iticha, B., & Takele, C. (2018). Soil–landscape variability: mapping and building detail information for soil management. Soil Use and Management, 34(1), 111–123.

    Google Scholar 

  • Jeffries, P., Gianinazzi, S., Sperotto, S., Turnau, K., & Barea, J. (2003). The contribution of Arbuscular Mycorrhizal fungi sustainable maintenance of plant health and fertility. Biology and Fertility of Soils, 37(1), 1–16.

    Google Scholar 

  • Kaiser, H. F. (1961). A note on Guttman’s lower bound for the number of common factors. British Journal of Statistical Psychology, 14(1), 1–2.

    Google Scholar 

  • Khuroo, A. A., Rashid, I., Reshi, Z., Dar, G. H., & Wafai, B. A. (2007). The alien flora of Kashmir Himalaya. Biological Invasions, 9(3), 269–292.

    Google Scholar 

  • Khuroo, A. A., Reshi, Z., Rashid, I., Dar, G. H., & Malik, A. H. (2009). Plant invasions in montane ecosystems. Frontiers in Ecology and the Environment, 7(8), 407–408.

    Google Scholar 

  • Khuroo, A. A., Malik, A. H., Reshi, Z. A., & Dar, G. H. (2010a). From ornamental to detrimental: plant invasion of Leucanthemum vulgare Lam. (ox-eye daisy) in Kashmir valley, India. Current Science, 98(5), 600–602.

    Google Scholar 

  • Khuroo, A. A., Weber, E., Malik, A. H., Dar, G. H., & Reshi, Z. A. (2010b). Taxonomic and biogeographic patterns in the native and alien flora of Kashmir Himalaya, India. Nordic Journal of Botany, 28(6), 685–669.

    Google Scholar 

  • Kjeldahl, J. (1883). A new method for the determination of nitrogen in organic matter. Journal of Analytical Chemistry, 22, 366–382.

    Google Scholar 

  • Kothari, C. R. (2004). Research methodology: methods and techniques. New Delhi: New Age International (P) Limited Publishers.

    Google Scholar 

  • Kulmatiski, A., & Beard, K. H. (2011). Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biology and Biochemistry, 43(4), 823–830.

    CAS  Google Scholar 

  • Kulmatiski, A., & Kardol, P. (2008). Getting plant soil feedbacks out of the greenhouse: experimental and conceptual approaches. Progress in Botany, 69, 449–472.

    Google Scholar 

  • Kulmatiski, A., Beard, K. H., Stevens, J., & Cobbold, S. M. (2008). Plant-soil feedbacks: a meta-analytical review. Ecology Letters, 11(9), 980–992.

    Google Scholar 

  • Lamare, R. E., & Singh, O. P. (2017). Changes in soil quality in limestone mining area of Meghalaya, India. Nature, Environment and Pollution Technology, 16(2), 545–550.

    CAS  Google Scholar 

  • Leary, J. K., Hue, N. V., Singleton, P. W., & Borthakur, D. (2006). The major features of an infestation by the invasive weed legume gorse (Ulex europaeus) on volcanic soils in Hawaii. Biology and Fertility of Soils, 42(3), 215–223.

    Google Scholar 

  • Levine, J. M., Vilà, M., D'Antonio, C. M., Dukes, J. S., Grigulis, K., & Lavorel, S. (2003). Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London, 270(1517), 775–781.

    Google Scholar 

  • Li, X. F., Li, B., Singh, Z., Rengelc, R., & Zhan, Z. (2007). Soil management changes organic carbon pools in alpine pastureland soils. Soil and Tillage Research, 93(1), 186–196.

    Google Scholar 

  • Liang, J., Reynolds, T., Wassie, A., Collins, C., & Wubalem, A. (2016). Effects of exotic Eucalyptus spp. plantations on soil properties in and around sacred natural sites in the northern Ethiopian Highlands Janice. AIMS Agriculture and Food, 1(2), 175–193.

    Google Scholar 

  • Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., Chen, J., & Li, B. (2008). Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytologist, 177(3), 706–714.

    CAS  Google Scholar 

  • Little, K., Metelerkamp, B., & Smith, C. A. (1998). comparison of three methods of soil water content determination. South African Journal of Plant and Soil, 15(2), 80–89.

    Google Scholar 

  • MacArthur, R. H. (1957). On the relative abundance of bird species. Proceedings of the National Academy of Sciences of the United States of America, 43(3), 293–295.

    CAS  Google Scholar 

  • Maurel, N., Salmon, S., Ponge, J.-F., Machon, N., Moret, J., & Muratet, A. (2010). Does the invasive species Reynoutria japonica have an impact on soil and flora in urban wastelands? Biological Invasions, 12(6), 1709–1719.

    Google Scholar 

  • McDougall, K., Wright, G., & Peach, E. (2018). Coming to terms with ox-eye daisy (Leucanthem um vulgare) in Kosciuszko National Park, New South Wales. Ecological Managememt & Restoration, 19(1), 4–13.

    Google Scholar 

  • Meffin, R., Miller, A. L., Hulme, P. E., & Duncan, R. P. (2010). Experimental introduction of the alien weed Hieracium lepidulum reveals no significant impact on montane plant communities in New Zealand. Diversity and Distributions, 16(5), 804–815.

    Google Scholar 

  • Meyerson, L. A., Saltonstall, K., Windham, L., Kiviat, E., & Findlay, S. (2000). A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecology and Management, 9(2-3), 89–103.

    Google Scholar 

  • Mohd-Aizat, A., Mohamad-Roslan, M. K., Sulaiman, W. N. A., & Karam, D. S. (2014). The relationship between soil pH and selected soil properties in 48 years logged-over forest. International Journal of Environmental Sciences, 4(6), 1129–1140.

    CAS  Google Scholar 

  • Mugunga, C. P., & Mugumo, D. T. (2013). Acacia sieberiana effects on soil properties and plant diversity in Songa pastures, Rwanda. International Journal of Biodiversity, 1–11.

  • Nazim Uddin, M. D., & Robinson, R. W. (2017). Responses of plant species diversity and soil physical-chemical microbial properties to Phragmites australis invasion along a density gradient. Scientific Reports, 7(1), 11007.

    Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington, D.C: U.S. Government Printing Office.

    Google Scholar 

  • Osunkoya, O. O., & Perrett, C. (2011). Lantana camara L. (Verbenaceae) invasion effects on soil physicochemical properties. Biology and Fertility of Soils, 47(3), 349–355.

    CAS  Google Scholar 

  • Patel, D. H., & Lakdawala, M. M. (2014). Study of soil’s nature by pH and soluble salts through EC of Kalol-Godhra taluka territory. Der Chemica Sinica, 5(2), 1–7.

    Google Scholar 

  • Peres-Neto, P. R., Jackson, D. A., & Somers, K. M. (2005). How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Computational Statistics and Data Analysis, 49(4), 974–997.

    Google Scholar 

  • Pyšek, P., Jarošík, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U., & Vilà, M. (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18(5), 1725–1737.

    Google Scholar 

  • Qanbari, V., & Jamali, A. A. (2015). The relationship between elevation, soil properties and vegetation cover in the Shorb-Ol-Ain watershed of Yazd. Journal of Biodiversity and Environmental Sciences, 6(5), 49–56.

    Google Scholar 

  • Qin, Z., Xie, J.-F., Quan, G.-M., Zhang, J.-E., Mao, D.-J., & Di Tommaso, A. (2014). Impacts of the invasive annual herb Ambrosia artemisiifolia L. on soil microbial carbon source utilization and enzymatic activities. European Journal of Soil Biology, 60, 58–66.

    CAS  Google Scholar 

  • R Core Team. (2018). R: A Language and Environment for Statistical Computing. Vienna: Austria https://www.R-project.org/. Accessed 20 Mar 2019.

  • Reich, P. B., & Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11001–11006.

    CAS  Google Scholar 

  • Reshi, Z., Rashid, I., Khuroo, A. A., & Wafai, B. A. (2008). Effect of invasion by Centaurea iberica on community assembly of a mountain grassland of Kashmir Himalaya, India. Tropical Ecology, 49, 147–156.

    Google Scholar 

  • Rhoades, J. D., Raats, P. A. C., & Prather, R. J. (1976). Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Science Society of America Journal, 40(5), 651–655.

    Google Scholar 

  • Rodgers, W. A., & Panwar, H. S. (1988). Biogeographical Classification of India. Dehradun: Wildlife Institute of India.

    Google Scholar 

  • Rodgers, L., Wolfe, L., Leland, B., Werden, K., & Finzi, A. (2008). The invasive species Alliaria petiolata (garlic mustard) increases soil nutrient availability in northern hardwood–conifer forests. Oecologia, 157(3), 459–471.

    Google Scholar 

  • Ruwanza, S., & Shackleton, C. M. (2016). Effects of the invasive shrub, Lantana camara, on soil properties in the Eastern Cape, South Africa. Weed Biology and Management, 16(2), 67–79.

    Google Scholar 

  • Sachan, H. K., & Deeksha, K. (2017). Nutrient status and their relationship with soil properties of cassava (Manihot esculenta Crantz.) growing areas of Rewa district in Fiji. International Journal of Agriculture Sciences, 9(53), 4901–4904.

    CAS  Google Scholar 

  • Saeed, S., Barozai, M. Y. K., Ahmad, A., & Shah, S. H. (2014). Impact of altitude on soil physical and chemical properties in Sra Ghurgai (Takatu mountain range) Quetta, Balochistan. International Journal of Scientific and Engineering Research, 5(3), 730–735.

    Google Scholar 

  • Sardans, J., Bartrons, M., Margalef, O., Gargallo-Garriga, A., Janssens, I. A., Ciais, P., Obersteiner, M., Sigurdsson, B. D., Chen, H. Y., & Peñuelas, J. (2017). Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Global Change Biology, 23(3), 1282–1291.

    Google Scholar 

  • Shabbir, A., & Bajwa, R. (2006). Distribution of parthenium weed (Parthenium hysterophorus L.), an alien invasive weed species threatening the biodiversity of Islamabad. Weed Biology and Management, 6(2), 89–95.

    Google Scholar 

  • Sharma, G., & Raghubanshi, A. (2006). Tree population structure, regeneration and expected future composition at different levels of Lantana camara L. invasion in the Vindhyan tropical dry deciduous forest of India. Lyonia, 11(1), 25–37.

    Google Scholar 

  • Sharma, G., & Raghubanshi, A. (2009). Lantana invasion alters soil nitrogen pools and processes in the tropical dry deciduous forest of India. Applied Soil Ecology, 42(2), 134–140.

    Google Scholar 

  • Simba, Y. R., Kamweya, A. M., Mwangi, P. N., & Ochora, J. M. (2013). Impact of the invasive shrub, Lantana camara L. on soil properties in Nairobi National Park, Kenya. International Journal of Biodiversity and Conservation, 5(12), 803–809.

    Google Scholar 

  • Simberloff, D., & Von Holle, B. (1999). Positive interaction of nonindigenous species: invasional meltdown? Biological Invasions, 1(1), 21–32.

    Google Scholar 

  • Simberloff, D., Louis Martin, J., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., & Vilà, M. (2013). Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution, 28(1), 58–66.

    Google Scholar 

  • Soti, P. G., & Jayachandran, K. (2016). Effect of exotic invasive old-world climbing fern (Lygodium microphyllum) on soil properties. Journal of Soil Science and Plant Nutrition, 16(4), 930–940.

    CAS  Google Scholar 

  • Stewart, R. R. (1972). An annotated catalogue of the vascular plants of West Pakistan and Kashmir. Karachi: Fakhri Printing Press.

    Google Scholar 

  • Stutz, S., Mraz, P., Hinz, H. L., Muller-Scharer, H., & Schaffner, U. (2018). Biological invasion of oxeye daisy (Leucanthemum vulgare) in North America: pre-adaptation, post-introduction evolution, or both? PLoS One, 13, e0190705. https://doi.org/10.1371/journal.pone.0190705.

    Article  CAS  Google Scholar 

  • Tekiela, D. R., & Barney, J. N. (2017). Invasion shadows: the accumulation and loss of ecological impacts from an invasive plant. Invasive Plant Science and Management, 10(1), 1–8.

    Google Scholar 

  • Timsina, B., Shrestha, B. B., Rokaya, M. B., & Münzbergová, Z. (2011). Impact of Parthenium hysterophorus L. invasion on plant species composition and soil properties of grassland communities in Nepal. Flora, 206(3), 233–240.

    Google Scholar 

  • van der Putten, W. H., Bardgett, R. D., de Ruiter, P. C., Hol, W. H. G., Meyer, K. M., Bezemer, T. M., Bradford, M. A., Christensen, S., Eppinga, M. B., Fukami, T., Hemerik, L., Molofsky, J., Schädler, M., Scherber, C., Strauss, S. Y., Vos, M., & Wardle, D. A. (2009). Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia, 161(1), 1–14.

    Google Scholar 

  • Vance, C. P., Uhde-Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytologist, 157(3), 423–447.

    CAS  Google Scholar 

  • Vanderhoeven, S., Dassonville, N., & Meerts, P. (2005). Increased top soil mineral nutrient concentrations under exotic invasive plants in Belgium. Plant and Soil, 275(1-2), 169–179.

    CAS  Google Scholar 

  • Vanilarasu, K., & Balakrishnamurthy, G. (2014). Influences of organic manures and amendments in soil physiochemical properties and their impact on growth, yield and nutrient uptake of banana. The Bioscan, 9(2), 525–529.

    Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

    CAS  Google Scholar 

  • Weidenhamer, J. D., & Callaway, R. M. (2010). Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. Journal of Chemical Ecology, 36(1), 59–69.

    CAS  Google Scholar 

  • Werban, U., Kuka, K., & Merbach, I. (2009). Correlation of electrical resistivity, electrical conductivity and soil parameters at a long-term fertilization experiment. Near Surface Geophysics, 7(1), 5–14.

    Google Scholar 

  • Zabinski, C. A., Quinn, L., & Callaway, R. M. (2002). Phosphorus uptake, not carbon transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the presence of native grassland species. Functional Ecology, 16(6), 758–765.

    Google Scholar 

  • Zhang, C. B., Wang, J., Qiana, B. Y., & Li, W. H. (2009). Effects of the invader Solidago canadensis on soil properties. Applied Soil Ecology, 43(2-3), 163–169.

    CAS  Google Scholar 

  • Zhang, S., Chen, D., Sun, D., Wang, X., Smith, J. L., & Du, G. (2012). Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai–Tibetan Plateau, China. Biology and Fertility of Soils, 48(4), 393–400.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the Head, Department of Botany, University of Kashmir, Srinagar, and the Director, Department of Agriculture, Jammu and Kashmir Government, Srinagar, for providing necessary facilities during the course of the present study. We greatly acknowledge the kind help rendered by the research scholars and staff at the Centre for Biodiversity & Taxonomy, University of Kashmir, during the course of the present study. We are also highly thankful to two anonymous reviewers for their kind suggestions that helped us to substantially improve the manuscript. RA gratefully acknowledges the University Grant Commission (UGC, New Delhi) for providing fellowship under the NET-JRF scheme during the course of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameez Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Terrestrial and Ocean Dynamics: India Perspective

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, R., Khuroo, A.A., Hamid, M. et al. Plant invasion alters the physico-chemical dynamics of soil system: insights from invasive Leucanthemum vulgare in the Indian Himalaya. Environ Monit Assess 191 (Suppl 3), 792 (2019). https://doi.org/10.1007/s10661-019-7683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7683-x

Keywords

Navigation