Skip to main content
Log in

A review on the advanced leachate treatment technologies and their performance comparison: an opportunity to keep the environment safe

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Landfill application is the most common approach for biowaste treatment via leachate treatment system. When municipal solid waste deposited in the landfills, microbial decomposition breaks down the wastes generating the end products, such as carbon dioxide, methane, volatile organic compounds, and liquid leachate. However, due to the landfill age, the fluctuation in the characteristics of landfill leachate is foreseen in the leachate treatment plant. The focuses of the researchers are keeping leachate from contaminating groundwater besides keeping potent methane emissions from reaching the atmosphere. To address the above issues, scientists are required to adopt green biological methods to keep the environment safe. This review focuses on the assorting of research papers on organic content and nitrogen removal from the leachate via recent effective biological technologies instead of conventional nitrification and denitrification process. The published researches on the characteristics of various Malaysian landfill sites were also discussed. The understanding of the mechanism behind the nitrification and denitrification process will help to select an optimized and effective biological treatment option in treating the leachate waste. Recently, widely studied technologies for the biological treatment process are aerobic methane oxidation coupled to denitrification (AME-D) and partial nitritation–anammox (PN/A) process, and both were discussed in this review article. This paper gives the idea of the modification of the conventional treatment technologies, such as combining the present processes to make the treatment process more effective. With the integration of biological process in the leachate treatment, the effluent discharge could be treated in shortcut and novel pathways, and it can lead to achieving “3Rs” of reduce, reuse, and recycle approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas, A. A., Jingsong, G., Ping, L. Z., Ya, P. Y., & Al-Rekabi, W. S. (2009). Review on landfill leachate treatments. Journal of Applied Sciences Research, 5, 534–545.

    CAS  Google Scholar 

  • Abma, W. R., Schultz, C. E., Mulder, J. W., Van der Star, W. R., Strous, M., Tokutomi, T., & Van Loosdrecht, M. C. (2007). Full-scale granular sludge anammox process. Water Science and Technology, 55, 8–9.

    Google Scholar 

  • Abma, W. R., Driessen, W., Haarhuis, R., & Van Loosdrecht, M. C. (2010). Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Science and Technology, 61, 1715–1722.

    CAS  Google Scholar 

  • Abood, A. R., Bao, J., & Abudi, Z. N. (2013). Biological nutrient removal by internal circulation upflow sludge blanket reactor after landfill leachate pretreatment. Journal of Environmental Sciences, 25, 2130–2137.

    CAS  Google Scholar 

  • Agamuthu, P., & Masaru, T. (2014). Municipal solid waste management in Asia and the Pacific Islands: challenges and strategic solutions. Singapore: Springer.

    Google Scholar 

  • Akkaya, E., Demir, A., Karadag, D., Varank, G., Bilgili, M. S., & Ozkaya, B. (2010). Post-treatment of anaerobically treated medium-age landfill leachate. Environmental Progress & Sustainable Energy, 29, 78–84.

    CAS  Google Scholar 

  • Alvarez-Vazquez, H., Jefferson, B., & Judd, S. J. (2004). Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review. Journal of Chemical Technology and Biotechnology, 79, 1043–1049.

    CAS  Google Scholar 

  • Amr, A. S. S., Aziz, H. A., Adlan, M. N., & Alkasseh, J. M. (2014). Effect of ozone and ozone/persulfate processes on biodegradable and soluble characteristics of semiaerobic stabilized leachate. Environmental Progress & Sustainable Energy, 33, 184–191.

    Google Scholar 

  • Andrus, J. M., Porter, M. D., Rodríguez, L. F., Kuehlhorn, T., Cooke, R. A., Zhang, Y., Kent, A. D., & Zilles, J. L. (2014). Spatial variation in the bacterial and denitrifying bacterial community in a biofilter treating subsurface agricultural drainage. Microbial Ecology, 67, 265–272.

    CAS  Google Scholar 

  • Aziz, H. A., Yusoff, M. S., Adlan, M. N., Adnan, N. H., & Alias, S. (2004). Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Waste Management, 24, 353–358.

    CAS  Google Scholar 

  • Aziz, H. A., Alias, S., Adlan, M. N., Asaari, A. H., & Zahari, M. S. (2007). Colour removal from landfill leachate by coagulation and flocculation processes. Bioresource Technology, 98, 218–220.

    CAS  Google Scholar 

  • Aziz, H. A., Yusoff, M. S., Aziz, S. Q., Umar, M., & Bashir, M. J. (2009). A leachate quality at Pulau Burung, Kuala Sepetang and Kulim landfills—a comparative study. Proceedings Civil Engineering Conference (AWAM 09), 978-983.

  • Aziz, S. Q., Aziz, H. A., Yusoff, M. S., Bashir, M. J., & Umar, M. (2010). Leachate characterization in semi-aerobic and anaerobic sanitary landfills: a comparative study. Journal of Environmental Management, 91, 2608–2614.

    CAS  Google Scholar 

  • Aziz, S. Q., Aziz, H. A., Bashir, M. J., & Mojiri, A. (2015). Assessment of various tropical municipal landfill leachate characteristics and treatment opportunities. Global NEST Journal, 17, 439–450.

    CAS  Google Scholar 

  • Bai, T., Lei, H., Yu, G., Yu, Q., Li, Z., & Li, H. (2009). High nitrite accumulation and strengthening denitrification for old-age landfill leachate treatment using an autocontrol two-stage hybrid process. Process Safety and Environment Protection, 87, 307–314.

    CAS  Google Scholar 

  • Bashir, M. J., Isa, M. H., Kutty, S. R., Awang, Z. B., Aziz, H. A., Mohajeri, S., & Farooqi, I. H. (2009). Landfill leachate treatment by electrochemical oxidation. Waste Management, 29, 2534–2541.

    CAS  Google Scholar 

  • Beck, D. A., Kalyuzhnaya, M. G., Malfatti, S., Tringe, S. G., del Rio, T. G., Ivanova, N., Lidstrom, M. E., & Chistoserdova, L. (2013). A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ., 9, 23.

    Google Scholar 

  • Bettazzi, E., Caffaz, S., Vannini, C., & Lubello, C. (2010). Nitrite inhibition and intermediates effects on anammox bacteria: a batch-scale experimental study. Process Biochemistry, 45, 573–580.

    CAS  Google Scholar 

  • Blackburne, R., Yuan, Z., & Keller, J. (2008). Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation, 19, 303–312.

    CAS  Google Scholar 

  • Bothe, H., Jensen, K. M., Mergel, A., Larsen, J., Jørgensen, C., Bothe, H., & Jørgensen, L. (2008). Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process. Applied Microbiology and Biotechnology, 59, 33–39.

    Google Scholar 

  • Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., Van der Werf, G. R., Peylin, P., Brunke, E. G., Carouge, C., & Langenfelds, R. L. (2006). Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439–443.

    CAS  Google Scholar 

  • Bru, D., Sarr, A., & Philippot, L. (2007). Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Applied and Environmental Microbiology, 73, 5971–5974.

    CAS  Google Scholar 

  • Cassano, D., Zapata, A., Brunetti, G., Del Moro, G., Di Iaconi, C., Oller, I., Malato, S., & Mascolo, G. (2011). Comparison of several combined/integrated biological—AOPs setups for the treatment of municipal landfill leachate: minimization of operating costs and effluent toxicity. Chemical Engineering Journal, 172, 250–257.

    CAS  Google Scholar 

  • Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., Albrechtsen, H. J., & Heron, G. (2001). Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16, 659–718.

    CAS  Google Scholar 

  • Christianson, L., Helmers, M., Bhandari, A., & Moorman, T. (2013). Internal hydraulics of an agricultural drainage denitrification bioreactor. Ecological Engineering, 52, 298–307.

    Google Scholar 

  • Chung, J., Amin, K., Kim, S., Yoon, S., Kwon, K., & Bae, W. (2014). Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor. Water Research, 58, 169–178.

    CAS  Google Scholar 

  • Costa, C., Dijkema, C., Friedrich, M., Garcia-Encina, P., Fernandez-Polanco, F., & Stams, A. J. (2000). Denitrification with methane as electron donor in oxygen-limited bioreactors. Applied Microbiology and Biotechnology, 53, 754–762.

    CAS  Google Scholar 

  • Dapena-Mora, A., Fernandez, I., Campos, J. L., Mosquera-Corral, A., Mendez, R., & Jetten, M. S. (2007). Evaluation of activity and inhibition effects on anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 40, 859–865.

    CAS  Google Scholar 

  • DEFRA. (2011). Government review of waste policy in England, Department of Environment-Food and Rural Affairs.

  • Desloover, J., De Clippeleir, H., Boeckx, P., Du Laing, G., Colsen, J., Verstraete, W., & Vlaeminck, S. E. (2011). Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Research, 45, 2811–2821.

    CAS  Google Scholar 

  • Dumont, M. G., Pommerenke, B., & Casper, P. (2013). Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environmental Microbiology Reports, 5, 757–764.

    CAS  Google Scholar 

  • Dunfield, P. F., Yuryev, A., Senin, P., Smirnova, A. V., Stott, M. B., Hou, S., Ly, B., Saw, J. H., Zhou, Z., Ren, Y., & Wang, J. (2007). Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 450, 879–882.

    CAS  Google Scholar 

  • Egli, K., Fanger, U., Alvarez, P. J., Siegrist, H., van der Meer, J. R., & Zehnder, A. J. (2001). Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology, 175, 198–207.

    CAS  Google Scholar 

  • Eisentraeger, A., Klag, P., Vansbotter, B., Heymann, E., & Dott, W. (2001). Denitrification of groundwater with methane as sole hydrogen donor. Water Research, 35, 2261–2267.

    CAS  Google Scholar 

  • Elgood, Z., Robertson, W. D., Schiff, S. L., & Elgood, R. (2010). Nitrate removal and greenhouse gas production in a stream-bed denitrifying bioreactor. Ecological Engineering, 36, 1575–1580.

    Google Scholar 

  • Europasia Engineering Services Sdn. Bhd. (2016). Detailed EIA for the Proposed Expansion of 130.55 Acres Sanitary Landfill in Mukim Jeram, District of Kuala Selangor, Selangor Darul Ehsan.

  • Fernández, I., Dosta, J., Fajardo, C., Campos, J. L., Mosquera-Corral, A., & Méndez, R. (2012). Short-and long-term effects of ammonium and nitrite on the anammox process. Journal of Environmental Management, 95, S170–S174.

    Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2009). An overview of landfill leachate treatment via activated carbon adsorption process. Journal of Hazardous Materials, 171, 54–60.

    CAS  Google Scholar 

  • Fux, C., Huang, D., Monti, A., & Siegrist, H. (2004). Difficulties in maintaining long-term partial nitritation of ammonium-rich sludge digester liquids in a moving-bed biofilm reactor (MBBR). Water Science and Technology, 49, 11–12.

    Google Scholar 

  • Ghafari, S., Aziz, H. A., & Bashir, M. J. (2010). The use of poly-aluminum chloride and alum for the treatment of partially stabilized leachate: a comparative study. Desalination, 257, 110–116.

    CAS  Google Scholar 

  • Güven, D., Dapena, A., Kartal, B., Schmid, M. C., Maas, B., van de Pas-Schoonen, K., Sozen, S., Mendez, R., den Camp, H. J., Jetten, M. S., & Strous, M. (2005). Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Applied and Environmental Microbiology, 71, 1066–1071.

    Google Scholar 

  • Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., & Tyson, G. W. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500, 567–570.

    CAS  Google Scholar 

  • Hassan, M., & Xie, B. (2014). Use of aged refuse-based bioreactor/biofilter for landfill leachate treatment. Applied Microbiology and Biotechnology, 98, 6543–6553.

    CAS  Google Scholar 

  • Herbert, R. B., Jr., Winbjörk, H., Hellman, M., & Hallin, S. (2014). Nitrogen removal and spatial distribution of denitrifier and anammox communities in a bioreactor for mine drainage treatment. Water Research, 66, 350–360.

    CAS  Google Scholar 

  • Hippen, A., Rosenwinkel, K. H., Baumgarten, G., & Seyfried, C. F. (1997). Aerobic deammonification: a new experience in the treatment of waste waters. Water Science and Technology, 35, 111–120.

    CAS  Google Scholar 

  • Hoang, V. Y., Jupsin, H., Le, V. C., & Vasel, J. L. (2012). Modeling of partial nitrification and denitrification in an SBR for leachate treatment without carbon addition. Journal of Material Cycles and Waste Management, 14, 3–13.

    CAS  Google Scholar 

  • Hoornweg, D., Bhada-Tata, P. (2012). What a waste: a global review of solid waste management. World Bank’s Urban Development and Local Government Unit of the Sustainable Development Network.

  • Huo, S., Xi, B., Yu, H., He, L., Fan, S., & Liu, H. (2008). Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages. Journal of Environmental Sciences, 20, 492–498.

    CAS  Google Scholar 

  • Isaka, K., Suwa, Y., Kimura, Y., Yamagishi, T., Sumino, T., & Tsuneda, S. (2008). Anaerobic ammonium oxidation (anammox) irreversibly inhibited by methanol. Applied Microbiology and Biotechnology, 81, 379–385.

    CAS  Google Scholar 

  • Islam, T., Jensen, S., Reigstad, L. J., Larsen, O., & Birkeland, N. K. (2008). Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proceedings of the National Academy of Sciences of the United States of America, 105, 300–304.

    CAS  Google Scholar 

  • Jayanthi, B., Emenike, C. U., Agamuthu, P., Simarani, K., Mohamad, S., & Fauziah, S. H. (2016). Selected microbial diversity of contaminated landfill soil of Peninsular Malaysia and the behavior towards heavy metal exposure. Catena, 147, 25–31.

    CAS  Google Scholar 

  • Jeanningros, Y., Graveleau, L., Kaldate, A., Vlaeminck, S. E., & Verstraete, W. (2010). Fast start-up of a pilot-scale deammonification sequencing batch reactor from an activated sludge inoculum. Water Science and Technology, 61, 1393–1400.

    CAS  Google Scholar 

  • Jensen, D. L., Ledin, A., & Christensen, T. H. (1999). Speciation of heavy metals in landfill-leachate polluted groundwater. Water Research, 33, 2642–2650.

    CAS  Google Scholar 

  • Jetten, M. S., Wagner, M., Fuerst, J., van Loosdrecht, M., Kuenen, G., & Strous, M. (2001). Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process. Current Opinion in Biotechnology, 12, 283–288.

    CAS  Google Scholar 

  • Jones, D. L., Williamson, K. L., & Owen, A. G. (2006). Phytoremediation of landfill leachate. Waste Management, 26, 825–837.

    CAS  Google Scholar 

  • Jones, C. M., Stres, B., Rosenquist, M., & Hallin, S. (2008). Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Molecular Biology and Evolution, 25, 1955–1966.

    CAS  Google Scholar 

  • Joss, A., Salzgeber, D., Eugster, J., König, R., Rottermann, K., Burger, S., Fabijan, P., Leumann, S., Mohn, J., & Siegrist, H. (2009). Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environmental Science & Technology, 43, 5301–5306.

    CAS  Google Scholar 

  • Joss, A., Derlon, N., Cyprien, C., Burger, S., Szivak, I., Traber, J., Siegrist, H., & Morgenroth, E. (2011). Combined nitritation-anammox: advances in understanding process stability. Environmental Science & Technology, 45, 9735–9742.

    CAS  Google Scholar 

  • Kalyuhznaya, M. G., Martens-Habbena, W., Wang, T., Hackett, M., Stolyar, S. M., Stahl, D. A., Lidstrom, M. E., & Chistoserdova, L. (2009). Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environmental Microbiology Reports, 1, 385–392.

    CAS  Google Scholar 

  • Kartal, B., Rattray, J., van Niftrik, L. A., van de Vossenberg, J., Schmid, M. C., Webb, R. I., Schouten, S., Fuerst, J. A., Damsté, J. S., Jetten, M. S., & Strous, M. (2007). Candidatus Anammoxoglobus propionicus a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 30, 39–49.

    CAS  Google Scholar 

  • Kim, S., Jung, H., Kim, K. S., & Kim, I. S. (2004). Treatment of high nitrate-containing wastewaters by sequential heterotrophic and autotrophic denitrification. Journal of Environmental Engineering, 130, 1475–1480.

    CAS  Google Scholar 

  • Kim, D., Ryu, H. D., Kim, M. S., Kim, J., & Lee, S. I. (2007). Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. Journal of Hazardous Materials, 146, 81–85.

    CAS  Google Scholar 

  • Kits, K. D., Klotz, M. G., & Stein, L. Y. (2015). Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environmental Microbiology, 17, 3219–3232.

    CAS  Google Scholar 

  • Kjeldsen, P., Barlaz, M., Rooker, A., Baun, A., Ledin, A., & Christensen, T. (2002). Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environment Science and Technology, 32, 297–336.

    CAS  Google Scholar 

  • Knittel, K., & Boetius, A. (2009). Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 63, 311–334.

    CAS  Google Scholar 

  • Kornboonraksa, T. H., Lee, S., Lee, S. H., & Chiemchaisri, C. (2009). Application of chemical precipitation and membrane bioreactor hybrid process for piggery wastewater treatment. Bioresource Technology, 100, 1963–1968.

    CAS  Google Scholar 

  • Kulikowska, D., & Klimiuk, E. (2008). The effect of landfill age on municipal leachate composition. Bioresource Technology, 99, 5981–5985.

    CAS  Google Scholar 

  • Kurniawan, T. A., Lo, W. H., & Chan, G. Y. S. (2006a). Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. Journal of Hazardous Materials, 129, 80–100.

    CAS  Google Scholar 

  • Kurniawan, T. A., Lo, W. H., & Chan, G. Y. S. (2006b). Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate. Chemical Engineering Journal, 125, 35–57.

    CAS  Google Scholar 

  • Lackner, S., Gilbert, E. M., Vlaeminck, S. E., Joss, A., Horn, H., & van Loosdrecht, M. C. (2014). Full-scale partial nitritation/anammox experiences—an application survey. Water Research, 55, 292–303.

    CAS  Google Scholar 

  • Leachater. (2011). How leachate changes in a landfill over time. The Leachate Expert Website.

    Google Scholar 

  • Lee, S. W., Im, J., DiSpirito, A. A., Bodrossy, L., Barcelona, M. J., & Semrau, D. (2009). Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Applied Microbiology and Biotechnology, 85, 389–403.

    CAS  Google Scholar 

  • Lee, A. H., Nikraz, H., & Hung, Y. T. (2010). Influence of waste age on landfill leachate quality. International Journal of Environmental Science and Development, 1, 347–350.

    Google Scholar 

  • Li, X. Z., & Zhao, Q. L. (2002). MAP precipitation from landfill leachate and seawater bittern waste. Environmental Technology, 23, 989–1000.

    CAS  Google Scholar 

  • Lieberman, R. L., & Rosenzweig, A. C. (2004). Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Critical Reviews in Biochemistry and Molecular Biology, 39, 147–164.

    CAS  Google Scholar 

  • Lim, C. K., Seow, T. W., Neoh, C. H., Nor, M. H. M., Ibrahim, Z., Ware, I., & Sarip, S. H. M. (2016). Treatment of landfill leachate using ASBR combined with zeolite adsorption technology. Biotech, 6, 1–6.

    Google Scholar 

  • Liu, L. H., & Koenig, A. (2002). Use of limestone for pH control in autotrophic denitrification: batch experiments. Process Biochemistry, 37, 885–893.

    CAS  Google Scholar 

  • Liu, H. J., Jiang, W., Wan, D. J., & Qu, J. H. (2009). Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water. Journal of Hazardous Materials, 169, 23–28.

    CAS  Google Scholar 

  • Liu, J., Sun, F., Wang, L., Ju, X., Wu, W., & Chen, Y. (2014). Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions. Microbial Biotechnology, 7, 64–76.

    CAS  Google Scholar 

  • Liu, Z. P., Wu, W. H., Shi, P., Guo, J. S., & Cheng, J. (2015). Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation. Waste Management, 41, 111–118.

    CAS  Google Scholar 

  • Lotti, T., van der Star, W. R. L., Kleerebezem, R., Lubello, C., & van Loosdrecht, M. C. M. (2012). The effect of nitrite inhibition on the anammox process. Water Research, 46, 2559–2569.

    CAS  Google Scholar 

  • Luesken, F. A., Wu, M. L., Op den Camp, H. J. M., Keltjens, J. T., Stunnenberg, H., Francoijs, K., Strous, M., & Jetten, M. S. M. (2012). Effect of oxygen on the anaerobic methanotroph Candidatus Methylomirabilis oxyfera: kinetic and transcriptional analysis. Environmental Microbiology, 14, 1024–1034.

    CAS  Google Scholar 

  • Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: practices and challenges. Waste Management, 29, 2902–2906.

    Google Scholar 

  • Manconi, I., Carucci, A., & Lens, P. (2007). Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system. Biotechnology and Bioengineering, 98, 551–560.

    CAS  Google Scholar 

  • Mandernack, K. W., Kinney, C. A., Coleman, D., Huang, Y. S., Freeman, K. H., & Bogner, J. (2000). The biogeochemical controls of N2O production and emission in landfill cover soils: the role of methanotrophs in the nitrogen cycle. Environmental Microbiology, 2, 298–309.

    CAS  Google Scholar 

  • Martin, K. J., & Nerenberg, N. (2012). The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresource Technology, 122, 83–94.

    CAS  Google Scholar 

  • Marttinen, S. K., Kettunen, R. H., & Rintala, J. A. (2003). Occurrence and removal of organic pollutants in sewages and landfill leachates. The Science of the Total Environment, 301, 1–12.

    CAS  Google Scholar 

  • Modin, O., Fukushi, K., & Yamamoto, K. (2007). Denitrification with methane as external carbon source. Water Research, 41, 2726–2738.

    CAS  Google Scholar 

  • Modin, O., Fukushi, K., Nakajima, F., & Yamamoto, K. (2008). Performance of a membrane biofilm reactor for denitrification with methane. Bioresource Technology, 99, 8054–8060.

    CAS  Google Scholar 

  • Modin, O., Fukushi, K., Nakajima, F., & Yamamoto, K. (2010). Nitrate removal and biofilm characteristics in methanotrophic membrane biofilm reactors with various gas supply regimes. Water Research, 44, 85–96.

    CAS  Google Scholar 

  • Mohammadzadeh, H., Clark, I., Marschner, M., & St-Jean, G. (2005). Compound Specific Isotopic Analysis (CSIA) of landfill leachate DOC components. Chemical Geology, 218, 3–13.

    CAS  Google Scholar 

  • Moon, H. S., Ahn, K. H., Lee, S., Nam, K., & Kim, J. Y. (2004). Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system. Environmental Pollution, 129(3), 499–507.

    CAS  Google Scholar 

  • Mulder, A. (2003). The quest for sustainable nitrogen removal technologies. Water Science and Technology, 48, 67–75.

    CAS  Google Scholar 

  • Nazrieza, N., Siti Rohana, M. Y., Subramaniam, K., & Hazilia, H. (2015). Characterization of leachate from panchang bedena landfill, Batang Padang Landfill and Matang Landfill: a comparative study. Malaysian Journal of Science, 34, 69–77.

    Google Scholar 

  • Oman, C. B., & Junestedt, C. (2008). Chemical characterization of landfill leachates—400 parameters and compounds. Waste Management, 28, 1876–1891.

    Google Scholar 

  • Oulego, P., Collado, S., Laca, A., & Díaz, M. (2016). Impact of leachate composition on the advanced oxidation treatment. Water Research, 88, 389–402.

    CAS  Google Scholar 

  • Park, S., & Yoon, T. (2007). The effects of iron species and mineral particles on advanced oxidation processes for the removal of humic acids. Desalination, 208, 181–191.

    CAS  Google Scholar 

  • Philippot, L., Andert, J., Jones, C. M., Bru, D., & Hallin, S. (2011). Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biology, 17, 1497–1504.

    Google Scholar 

  • Pol, A., Heijmans, K., Harhangi, H. R., Tedesco, D., Jetten, M. S. M., & Op den Camp, H. J. M. (2007). Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature., 450, 874–878.

    CAS  Google Scholar 

  • Pollice, A., Tandoi, V., & Lestingi, C. (2002). Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Research, 36, 2541–2546.

    CAS  Google Scholar 

  • Price, G. A., Barlaz, M. A., & Hater, G. R. (2003). Nitrogen management in bioreactor landfills. Waste Management, 23, 675–688.

    CAS  Google Scholar 

  • Puyol, D., Carvajal-Arroyo, J. M., Sierra-Alvarez, R., & Field, J. A. (2014). Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions. Biotechnology Letters, 36, 547–551.

    CAS  Google Scholar 

  • Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: review and opportunity. Journal of Hazardous Materials, 150, 468–493.

    CAS  Google Scholar 

  • Richardson, D. J., Berks, B. C., Russell, D. A., Spiro, S., & Taylor, C. J. (2001). Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cellular and Molecular Life Sciences, 58, 165–178.

    CAS  Google Scholar 

  • Rigby, H., & Smith, S. R. (2013). Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils. Waste Management, 33, 2641–2652.

    CAS  Google Scholar 

  • Rivas, F. J., Beltrán, F., Carvalho, F., Acedo, B., & Gimeno, O. (2004). Stabilized leachates: sequential coagulation-flocculation+chemical oxidation process. Journal of Hazardous Materials, 116, 95–102.

    CAS  Google Scholar 

  • Rosenwinkel, K. H., & Cornelius, A. (2005). Deammonification in the moving-bed process for the treatment of wastewater with high ammonia content. Chemical Engineering and Technology, 28, 49–52.

    CAS  Google Scholar 

  • Ruiz, G., Jeison, D., & Chamy, R. (2003). Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Research, 37, 1371–1377.

    CAS  Google Scholar 

  • Ruiz, G., Jeison, D., Rubilar, O., Ciudad, G., & Chamy, R. (2006). Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresource Technology, 97, 330–335.

    CAS  Google Scholar 

  • Sadri, S., Cicek, N., & Van Gulck, J. (2008). Aerobic treatment of landfill leachate using a submerged membrane bioreactor-prospects for onsite use. Environmental Technology, 29, 899–907.

    CAS  Google Scholar 

  • Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (2003). Chemistry for environmental engineering and science. Boston: McGraw-Hill.

    Google Scholar 

  • Schüch, A., Morscheck, G., Lemke, A., & Nelles, M. (2016). Bio-waste recycling in Germany—further challenges. Procedia Environmental Sciences, 35, 308–318.

    Google Scholar 

  • Siegrist, H., Salzgeber, D., Eugster, J., & Joss, A. (2008). Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Science and Technology, 57, 383–388.

    CAS  Google Scholar 

  • Silva, T. F., Silva, M. E., Cunha-Queda, A. C., Fonseca, A., Saraiva, I., Sousa, M. A., Gonçalves, C., Alpendurada, M. F., Boaventura, R. A., & Vilar, V. J. (2013). Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial-biodegradability enhancement and evolution profile of trace pollutants. Water Research, 47, 6167–6186.

    CAS  Google Scholar 

  • Silva, T. F., Soares, P. A., Manenti, D. R., Fonseca, A., Saraiva, I., Boaventura, R. A., & Vilar, V. J. (2017). An innovative multistage treatment system for sanitary landfill leachate depuration: studies at pilot-scale. The Science of the Total Environment, 576, 99–117.

    CAS  Google Scholar 

  • Statom, R. A., Thyne, G. D., & McCray, J. E. (2004). Temporal changes in leachate chemistry of a municipal solid waste landfill cell in Florida, USA. Environmental Geology, 45, 982–991.

    CAS  Google Scholar 

  • Stein, L. Y., & Klotz, M. G. (2011). Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochemical Society Transactions, 39, 1826–1831.

    CAS  Google Scholar 

  • Stoecker, K., Bendinger, B., Schöning, B., Nielsen, P. H., Nielsen, J. L., Baranyi, C., Toenshoff, E. R., Daims, H., & Wagner, M. (2006). Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proceedings of the National Academy of Sciences of the United States of America, 103, 2363–2367.

    CAS  Google Scholar 

  • Strous, M., Kuenen, J. G., & Jetten, M. S. (1999). Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65, 3248–3250.

    CAS  Google Scholar 

  • Sun, F. Y., Dong, W. Y., Shao, M. F., Lv, X. M., Li, J., Peng, L. Y., & Wang, H. J. (2013). Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation. Bioresource Technology, 145, 2–9.

    CAS  Google Scholar 

  • Szatkowska, B., Cema, G., Plaza, E., Trela, J., & Hultman, B. (2007). A one-stage system with partial nitritation and anammox processes in the moving-bed biofilm reactor. Water Science and Technology, 55, 8–9.

    Google Scholar 

  • Taha, M. R., Zuhairi, W., Yaacob, W., Samsudin, A. R., & Yaakob, J. (2011). Groundwater quality at two landfill sites in Selangor, Malaysia. Bulletin. Geological Society of Malaysia, 57, 13–18.

    Google Scholar 

  • Tamas, I., Smirnova, A. V., He, Z., & Dunfield, P. F. (2014). The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis. The ISME Journal, 8, 369–382.

    CAS  Google Scholar 

  • Tang, C., Zheng, J. P., Wang, C. H., Mahmood, Q., Zhang, J. Q., Chen, X. G., Zhang, L., & Chen, J. W. (2011). Performance of high-loaded anammox UASB reactors containing granular sludge. Water Research, 45, 135–144.

    CAS  Google Scholar 

  • Tatsi, A. A., & Zouboulis, A. I. (2002). A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Advances in Environmental Research, 6, 207–219.

    CAS  Google Scholar 

  • Tatsi, A. A., Zouboulis, A. I., Matis, K. A., & Samaras, P. (2003). Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere, 53, 737–744.

    CAS  Google Scholar 

  • Tchobanoglous, G., & Kreith, F. (2002). Handbook of solid waste management. New York, NY: McGraw-Hill.

    Google Scholar 

  • Tchobanoglous, G., Theisen, H., & Vigil, S. A. (1993). Integrated solid waste management: engineering principles and management issues. New York, NY: McGraw-Hill Inc.

    Google Scholar 

  • Third, K. A., Paxman, J., Schmid, M., Strous, M., Jetten, M. S., & Cord-Ruwisch, R. (2005). Enrichment of Anammox from activated sludge and its application in the CANON process. Microbial Ecology, 49, 236–244.

    CAS  Google Scholar 

  • Tränkler, J., Visvanathan, C., Kuruparan, P. & Tubtimthai, O. (2005). Influence of tropical seasonal variations on landfill leachate characteristics—Results from lysimeter studies. Waste Management, 25(10), 1013–1020.

  • Trotsenko, Y. A., & Murrell, J. C. (2008). Metabolic aspects of aerobic obligate methanotrophy. Advances in Applied Microbiology, 63, 183–229.

    CAS  Google Scholar 

  • Umar, M., Aziz, H. A., & Yusoff, M. S. (2010). Variability of parameters involved in leachate pollution index and determination of lpi from four landfills in Malaysia. International Journal of Chemical Engineering, 2010, 1–6.

    Google Scholar 

  • Vadivelu, V. M., Kelle, J., & Yuan, Z. (2007). Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. Water Research, 41, 826–834.

    CAS  Google Scholar 

  • Van Hulle, S. W., Vandeweyer, H. J., Meesschaert, B. D., Vanrolleghem, P. A., Dejans, P., & Dumoulin, A. (2010). Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chemical Engineering Journal, 162, 1–20.

    Google Scholar 

  • van Loosdrecht, M. C. M., & Salem, S. (2006). Biological treatment of sludge digester liquids. Water Science and Technology, 53, 11–20.

    Google Scholar 

  • Veuillet, F., Lacroix, S., Bausseron, A., Gonidec, E., Ochoa, J., Christensson, M., & Lemaire, R. (2014). Integrated fixed-film activated sludge ANITAMox process—a new perspective for advanced nitrogen removal. Water Science and Technology, 69, 915–922.

    CAS  Google Scholar 

  • Waki, M., Suzuki, K., Osada, T., & Tanaka, Y. (2005). Methane-dependent denitrification by a semi-partitioned reactor supplied separately with methane and oxygen. Bioresource Technology, 96, 921–927.

    CAS  Google Scholar 

  • Wang, H., & Qu, J. (2003). Comparison of two combined bioelectrochemical and sulfur autotrophic denitrification processes for drinking water treatment. Journal of Environmental Science and Health, Part A Environmental Science, 38, 1269–1284.

    CAS  Google Scholar 

  • Wang, Y., Wu, W., Ding, Y., Liu, W., Perera, A., Chen, Y., & Devare, M. (2008). Methane oxidation activity and bacterial community composition in a simulated landfill cover soil is influenced by the growth of Chenopodium album L. Soil Biology and Biochemistry, 40, 2452–2459.

    CAS  Google Scholar 

  • Wang, Z., Peng, Y., Miao, L., Cao, T., Zhang, F., Wang, S., & Han, J. (2016). Continuous-flow combined process of nitritation and anammox for treatment of landfill leachate. Bioresource Technology, 214, 514–519.

    CAS  Google Scholar 

  • Warneke, S., Schipper, L. A., Matiasek, M. G., Scow, K. M., Cameron, S., Bruesewitz, D. A., & McDonald, I. R. (2011). Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds. Water Research, 45, 5463–5475.

    CAS  Google Scholar 

  • Wett, B. (2007). Development and implementation of a robust deammonification process. Water Science and Technology, 56, 81–88.

    CAS  Google Scholar 

  • Wett, B., Hell, M., Nyhuis, G., Puempel, T., Takacs, I. & Murthy, S. (2010). Syntrophy of aerobic and anaerobic ammonia oxidisers. Water Science and Technology, 61, 1915–1922.

  • Wu, Y., Zhou, S., Ye, X., Chen, D., Zheng, K., & Qin, F. (2011). Transformation of pollutants in landfill leachate treated by a combined sequence batch reactor, coagulation, Fenton oxidation and biological aerated filter technology. Process Safety and Environment Protection, 89, 112–120.

    CAS  Google Scholar 

  • Wyffels, S., Van Hulle, S. W. H., Boeckx, P., Volcke, E. I. P., Van Cleemput, O., Vanrolleghem, P. A., & Verstraete, W. (2004). Modeling and simulation of oxygen-limited partial nitritation in a membrane-assisted bioreactor (MBR). Biotechnology and Bioengineering, 86, 531–542.

    CAS  Google Scholar 

  • Yang, Q., Peng, Y., Liu, X., Zeng, W., Mino, T., & Satoh, H. (2007). Nitrogen removal via nitrite from municipal wastewater at low temperatures using real-time control to optimize nitrifying communities. Environmental Science & Technology, 41, 8159–8164.

    CAS  Google Scholar 

  • Zainol, N. A., Aziz, H. A., & Yusoff, M. S. (2012). Characterization of leachate from Kuala Sepetang and Kulim landfills: a comparative study. Energy and Environmental Research, 2, 45.

    Google Scholar 

  • Zainol, N. A., Aziz, H. A., & Ibrahim, N. (2013). Treatment of kulim and kuala sepetang landfills leachates in Malaysia using poly-aluminium chloride (PACl). Research Journal of Chemical Sciences, 3, 606X.

    Google Scholar 

  • Zhang, L., Li, A., Lu, Y., Yan, L., Zhong, S., & Deng, C. (2009). Characterization and removal of dissolved organic matter (DOM) from landfill leachate rejected by nanofiltration. Waste Management, 29, 1035–1040.

    CAS  Google Scholar 

  • Zhu, J., Wang, Q., Yuan, M., Tan, G. Y., Sun, F., Wang, C., Wu, W., & Lee, P. H. (2016). Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review. Water Research, 90, 203–215.

    CAS  Google Scholar 

  • Zin, M., Shaylinda, N., Abdul Aziz, H., Adlan, M. N., & Ariffin, A. (2012). Characterization of leachate at Matang Landfill Site, Perak, Malaysia. Academic Journal of Science, 1, 317–322.

    Google Scholar 

  • Zolfaghari, M., Jardak, K., Drogui, P., Brar, S. K., Buelna, G., & Dubé, R. (2016). Landfill leachate treatment by sequential membrane bioreactor and electro-oxidation processes. Journal of Environmental Management, 184, 318–326.

    CAS  Google Scholar 

  • Zouboulis, A. I., Chai, X. L., & Katsoyiannis, I. A. (2004). The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. Journal of Environmental Management, 70, 35–41.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Trans Disciplinary Research Grant Scheme (TGRS) under Ministry of Higher Education (Project No.: TR001-2015A) for financially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Loke Show.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Show, P.L., Pal, P., Leong, H.Y. et al. A review on the advanced leachate treatment technologies and their performance comparison: an opportunity to keep the environment safe. Environ Monit Assess 191, 227 (2019). https://doi.org/10.1007/s10661-019-7380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7380-9

Keywords

Navigation