Skip to main content

Advertisement

Log in

Interplay of phosphorus doses, cyanobacterial inoculation, and elevated carbon dioxide on yield and phosphorus dynamics in cowpea

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Phosphorus (P) demand is likely to increase especially in legumes to harness greater benefits of nitrogen fixation under elevated CO2 condition. In the following study, seed yield and seed P uptake in cowpea increased by 26.8% and 20.9%, respectively, under elevated CO2 level. With an increase in phosphorus dose up to 12 mg kg−1, seed yield enhanced from 2.6 to 5.4 g plant−1. P application and cyanobacterial inoculation increased the microbial activity of soil, leading to increased availability of P. Under elevated CO2 condition, microbial activity, measured as dehydrogenase, acid phosphatase, and alkaline phosphatase activities showed stimulation. Soil available P also increased under elevated CO2 condition and was stimulated by both P application and cyanobacterial inoculation. Higher P uptake in elevated CO2 condition led to lower values of inorganic P in soil. Stepwise regression analysis showed that aboveground P uptake, soil available P, and alkaline phosphatase activity of soil influenced the yield while available P, and organic and inorganic P influenced the aboveground P uptake of the crop. This study revealed that under elevated CO2 condition, P application and cyanobacterial inoculation facilitated P uptake and yield, mediated through enhanced availability of nutrients, in cowpea crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351–372.

    Article  Google Scholar 

  • Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising (CO2): mechanisms and environmental interactions. Plant Cell Environment, 30, 258–270.

    Article  CAS  Google Scholar 

  • Badger, M. R., & Price, G. D. (2003). CO2 concentration mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany, 54(383), 609–622.

    Article  CAS  Google Scholar 

  • BassiriRad, H., Gutschick, V. P., & Lussenhop, J. (2001). Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2. Oecologia, 126, 305–320.

    Article  Google Scholar 

  • Bidyarani, N., Prasanna, R., Babu, S., Hossain, F., & Saxena, A. K. (2016). Enhancement of plant growth and yields in chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiology Research, 188-189, 97–105.

    Article  CAS  Google Scholar 

  • Centritto, M., & Loreto, F. (2005). Photosynthesis in a changing world: photosynthesis and abiotic stresses. Agriculture, Ecosystems & Environment, 106, 115–117.

    Article  CAS  Google Scholar 

  • Chakrabarti, B., Singh, S. D., Kumar, S. N., Aggarwal, P. K., Pathak, H., & Nagarajan, S. (2012). Low-cost facility for assessing impact of carbon dioxide on crops. Current Science, 102, 1035–1040.

    CAS  Google Scholar 

  • Chakraborty, K., Uprety, D. C., & Bhaduri, D. (2017). Growth, physiology and biochemical responses of two different Brassica species to elevated CO2. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87(2), 389–397.

    Article  CAS  Google Scholar 

  • deGraaff, M. A., van Groenigen, K. J., Six, J., Hungate, B., & van Kessel, C. (2006). Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biology, 12, 2077–2209.

    Article  Google Scholar 

  • Dey, S. K., Chakrabarti, B., Prasanna, R., Mittal, R., Singh, S. D., & Pathak, H. (2016). Growth and biomass partitioning in mungbean with elevated carbon dioxide, phosphorus levels and cyanobacteria inoculation. Journal of Agrometeorology, 18(1), 7–12.

    Google Scholar 

  • Dey, S. K., Chakrabarti, B., Prasanna, R., Pratap, D., Singh, S. D., Purakayastha, T. J., & Pathak, H. (2017a). Elevated carbon dioxide level along with phosphorus application and cyanobacterial inoculation enhances nitrogen fixation and uptake in cowpea crop. Archives of Agronomy and Soil Science, 63(13), 1927–1937.

    Article  CAS  Google Scholar 

  • Dey, S. K., Chakrabarti, B., Prasanna, R., Singh, S. D., Purakayastha, T. J., Datta, A., & Pathak, H. (2017b). Productivity of mungbean (Vigna radiata) with elevated carbon dioxide at various phosphorus levels and cyanobacteria inoculation. Legume Research, 40(3), 497–505.

    Google Scholar 

  • Drissner, D., Blum, H., Tscherko, D., & Kandeler, E. (2007). Nine years of enriched CO2 changes the function and structural diversity of soil microorganisms in a grassland. European Journal of Soil Science, 58, 260–269.

    Article  Google Scholar 

  • Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., Hoosbeek, M. R., Iversen, C. M., Jackson, R. B., Kubiske, M. E., Ledford, J., Liberloo, M., Oren, R., Polle, A., Pritchard, S., Zak, D. R., Schlesinger, W. H., & Ceulemans, R. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. PNAS, 104, 14014–14019.

    Article  CAS  Google Scholar 

  • Gentile, R., Dodd, M., Lieffering, M., Brock, S. C., Theobald, P. W., & Newton, P. C. D. (2012). Effects of long-term exposure to enriched CO2 on the nutrient supplying capacity of a grassland soil. Biology and Fertility of Soils, 48, 375–362.

    Article  Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327, 812–818.

    Article  CAS  Google Scholar 

  • Haase, S., Rothe, A., Kania, A., Wasaki, J., Römheld, V., Engels, C., Kandeler, E., & Neumann, G. (2008). Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration. Journal of Environmental Quality, 37, 154–1262.

    Article  Google Scholar 

  • Hungate, B. A., Stiling, P. D., Dijkstra, P., Johnson, D. W., Ketterer, M. E., Hymus, G. J., Hinkle, C. R., & Drake, B. G. (2004). CO2 elicits long-term decline in nitrogen fixation. Science, 304, 1291–1291.

    Article  CAS  Google Scholar 

  • IPCC. (2014). Summary for policymakers, In: Climate change, mitigation of climate change, contribution of working group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1–31). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jackson, M. L. (1956). Soil chemical analysis - advanced course. Published by the author, Dep. of Soil Science, Univ. of Wisconsin, Madison, WI.

  • Jin, J., Tang, C., Armstrong, R., & Sale, P. (2012). Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient vertisol. Plant and Soil, 358, 91–104.

    Article  CAS  Google Scholar 

  • Jin, J., Tang, C., Armstrong, R., Butterly, C., & Sale, P. (2013). Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant and Soil, 368, 315–328.

    Article  CAS  Google Scholar 

  • Jin, J., Tang, C., & Sale, P. (2015). The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Annals of Botany, 116(6), 987–999.

    Article  CAS  Google Scholar 

  • Karthikeyan, N., Prasanna, R., Nain, L., & Kaushik, B. D. (2007). Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. European Journal of Soil Biology, 43, 23–30.

    Article  CAS  Google Scholar 

  • Kaushik, B. D., & Venkataraman, G. S. (1979). Effect of algal inoculation on yield and vitamin C content of two varieties of tomato. Plant and Soil, 52, 135–137.

    Article  CAS  Google Scholar 

  • Klein, D. A., Loh, T. C., & Goulding, R. L. (1971). A rapid procedure to evaluate the dehydrogenase activity of soils low in organic matter. Soil Biology and Biochemistry, 3, 385–387.

    Article  CAS  Google Scholar 

  • Kogawara, S., Norisada, M., Tange, T., Yagi, H., & Kojima, K. (2006). Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Tree Physiology, 26, 25–33.

    Article  CAS  Google Scholar 

  • Lagomarsino, A., Moscatelli, M. C., Hoosbeek, M. R., de Angelis, P., & Grego, S. (2008). Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation. Plant and Soil, 308, 131–147.

    Article  CAS  Google Scholar 

  • Lin, W., Zhang, F., & Bai, K. (2000). Response of plant rhizosphere to atmospheric CO2 enrichment. Chinese Science Bulletin, 45, 97–100.

    Article  CAS  Google Scholar 

  • Lottmann, J., Heuer, H., de Vries, J., Mahn, A., Du¨ring, K., Wackernagel, W., Smalla, K., & Berg, G. (2000). Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiology Ecology, 33, 41–49.

    Article  Google Scholar 

  • Manjunath, M., Kanchan, A., Ranjan, K., Venkatachalam, S., Prasanna, R., Ramakrishnan, B., Hossain, F., Nain, L., Shivay, Y. S., Rai, A. B., & Singh, B. (2016). Beneficial cyanobacteria and eubacteria synergistically enhance the bioavailability of nutrients and yield of okra. Heliyon, 2(2), e00066. https://doi.org/10.1016/j.heliyon.

    Article  Google Scholar 

  • Martins, L. M. V., Xavier, G. R., Rangel, F. W., Ribeiro, J. R. A., Neves, M. C. P., Morgado, L. B., & Rumjalek, N. G. (2003). Contribution of biological nitrogen fixation to cowpea: a strategy for improving grain yields in the semi-arid regions of Brasil. Biology and Fertility of Soils, 38, 333–339.

    Article  Google Scholar 

  • Melillo, J. M., Butler, S., Johnson, J., Mohan, J., Steudler, P., Lux, H., Burrows, E., Bowlers, F., Smith, R., Scott, L., Vario, C., Hill, T., Burton, A., Zhou, Y. M., & Tang, J. (2011). Soil warming, carbon-nitrogen interactions, and forest carbon budgets. PNAS, 108, 9508–9512.

    Article  CAS  Google Scholar 

  • Norby, R. J., Cotrufo, M. F., Ineson, P., O’Neill, E. G., & Canadell, J. G. (2001). Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia, 127, 153–165.

    Article  Google Scholar 

  • Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., & McMurtrie, R. E. (2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. PNAS, 107, 19368–19373.

    Article  CAS  Google Scholar 

  • Olsen, S. R., & Sommers, L. E. (1982). In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Phosphorus. In methods of soil analysis, part 2: chemical and microbiological properties (2nd ed., pp. 403–430). Madison: The American Society of Agronomy.

    Google Scholar 

  • Olsen, S. R., Col, C. V., Watanabe, F., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dep. of Agric. Circ. 939.

  • Pramanik, P., Chakrabarti, B., Bhatia, A., Singh, S. D., Maity, A., Aggarwal, P., & Krishnan, P. (2018a). Effect of elevated temperature on soil hydrothermal regimes and growth of wheat crop. Environmental Monitoring and Assessment, 190(4), 217–226. https://doi.org/10.1007/s10661-018-6576-8.

    Article  CAS  Google Scholar 

  • Pramanik, P., Chakrabarti, B., Bhatia, A., Singh, S. D., Mridha, N., & Krishnan, P. (2018b). Effect of elevated carbon dioxide on soil hydrothermal regimes and growth of maize crop (Zea mays L.) in semi-arid tropics of Indo-Gangetic Plains. Environmental Monitoring and Assessment, 190, 661. https://doi.org/10.1007/s10661-018-6988-5.

    Article  CAS  Google Scholar 

  • Prasanna, R., Triveni, S., Bidyarani, N., Babu, S., Yadav, K., Adak, A., Khetarpal, S., Pal, M., Shivay, Y. S., & Saxena, A. K. (2014). Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Archives of Agronomy and Soil Science, 60, 349–366.

    Article  Google Scholar 

  • Prasanna, R., Babu, S., Bidyarani, N., Kumar, A., Triveni, S., Monga, D., Mukherjee, A. K., Kranthi, S., Gokte-Narkhedhar, N., Adak, A., et al. (2015). Prospecting cyanobacteria fortified composts as plant growth promoting and biocontrol agents in cotton. Experimental Agriculture, 51, 42–65.

    Article  Google Scholar 

  • Raj, A., Chakrabarti, B., Pathak, H., Singh, S. D., Mina, U., & Mittal, R. (2016). Growth, yield components and grain yield response of rice to temperature and nitrogen levels. Journal of Agrometeorology, 18(1), 1–6.

    Google Scholar 

  • Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology, 28, 897–906.

    Google Scholar 

  • Ross, D. J., Newton, P. C. D., & Tate, K. R. (2004). Elevated CO2 effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sand. Plant and Soil, 260, 183–196.

    Article  CAS  Google Scholar 

  • Saha, S., Sehgala, V. K., Nagarajana, S., & Pal, M. (2012). Impact of elevated atmospheric CO2 on radiation utilization and related plant biophysical properties in pigeon pea (Cajanus cajan L.). Agricultural and Forest Meteorology, 158–159, 63–70.

    Article  Google Scholar 

  • Saunders, W. M. H., & Williams, E. G. (1955). Observations on the determination of total organic phosphorus in soils. Journal of Soil Science, 6, 254–267.

    Article  CAS  Google Scholar 

  • Serraj, R., Sinclair, T. R., & Allen, L. H. (1998). Soybean nodulation and N2 fixation response to drought under carbon dioxide enrichment. Plant Cell and Environment, 21, 491–500.

    Article  Google Scholar 

  • Shen, J. B., Yuan, L. X., Zhang, J. L., Haigang, L., Zhaohai, B., Xinping, C., Weifeng, Z., & d Fusuo, Z. (2011). Phosphorus dynamics: from soil to plant. Plant Physiology, 156, 997–1005.

    Article  CAS  Google Scholar 

  • Singh, S. D., Chakrabarti B., Muralikrishna, K. S., Chaturvedi, A. K., Kumar, V., Mishra, S., & Harit, R. (2013). Yield response of important field crops to elevated air temperature and CO2 levels. Indian J Agri Sc, 83(10), 1009–1012.

  • Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., Roskot, N., Heuer, H., & Berg, G. (2001). Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Applied and Environmental Microbiology, 67(10), 4742–4751.

    Article  CAS  Google Scholar 

  • Song, C., Ballantyne, F. I. V., & Smith, V. H. (2014). Enhanced dissolved organic carbon production in aquatic ecosystems in response to elevated atmospheric CO2. Biogeochemistry, 118, 49–60.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307.

    Article  CAS  Google Scholar 

  • Uzoma, A. O., Osunde, A. O., & Bala, A. (2006). Effect of phosphorus and rhizobium inoculation on the yield and yield components of cowpea breeding lines in Minna. In: Proceedings of 31st Annual Conference of Soil Science Society of Nigeria. Zaria: ABU, November 13th – 17th.

  • vanGroenigen, K. J., Six, J., Hungate, B. A., de Graaff, M. A., van Breemen, N., & van Kessel, C. (2006). Element interactions limit soil carbon storage. PNAS, 103, 6571–6574.

    Article  CAS  Google Scholar 

  • Walker, T. W., & Adams, A. F. R. (1958). Studies on soil organic matter I. Influence of phosphorus content of parent materials on accumulation of carbon, nitrogen, sulfur and organic phosphorus in grassland soils. Soil Science, 85, 307–318.

    Article  CAS  Google Scholar 

  • Watanabe, F. S., & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Proceedings, 29, 677–678.

    Article  CAS  Google Scholar 

  • Zanetti, S., Hartwig, U. A., Luscher, A., Hebeisen, T., Frehner, M., Fischer, B. U., Hendrey, G. R., Blum, H., & Nosberger, J. (1996). Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiology, 12, 575–583.

    Article  Google Scholar 

Download references

Acknowledgements

The first author thanks the PG School and Director, ICAR-IARI, for providing a fellowship during the course of study. Partial funding was obtained from the National Innovations in Climate Resilient Agriculture, Indian Council of Agricultural Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Chakrabarti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1

Aboveground P uptake in cowpea crop as affected by elevated CO2 and P doses. (PDF 271 kb)

Supplementary Figure 2

Effect of elevated CO2, cyanobacterial inoculation and phosphorus doses on dehydrogenase activity (μg TPF g−1d−1) in soil under Cowpea crop. [T1: ambient CO2, without cyanobacterium, 0 mg kg−1 P, T2: ambient CO2, without cyanobacterium, 8 mg kg−1 P, T3: ambient CO2, without cyanobacterium, 12 mg kg−1 P, T4: ambient CO2, without cyanobacterium, 16 mg kg−1 P, T5: ambient CO2, without cyanobacterium, 20 mg kg−1 P, T6: ambient CO2, with cyanobacterium, 0 mg kg−1 P, T7: ambient CO2, with cyanobacterium, 8 mg kg−1 P, T8: ambient CO2, with cyanobacterium, 12 mg kg−1 P, T9: ambient CO2, with cyanobacterium, 16 mg kg−1 P, T10: ambient CO2, with cyanobacterium, 20 mg kg−1 P, T11: elevated CO2, without cyanobacterium, 0 mg kg−1 P, T12: elevated CO2, without cyanobacterium, 8 mg kg−1 P, T13: elevated CO2, without cyanobacterium, 12 mg kg−1 P, T14: elevated CO2, without cyanobacterium, 16 mg kg−1 P, T15: elevated CO2, without cyanobacterium, 20 mg kg−1 P, T16: elevated CO2, with cyanobacterium, 0 mg kg−1 P, T17: elevated CO2, with cyanobacterium, 8 mg kg−1 P, T18: elevated CO2, with cyanobacterium, 12 mg kg−1 P, T19: elevated CO2, with cyanobacterium, 16 mg kg−1 P, T20: elevated CO2, with cyanobacterium, 20 mg kg−1 P] (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S.K., Chakrabarti, B., Purakayastha, T.J. et al. Interplay of phosphorus doses, cyanobacterial inoculation, and elevated carbon dioxide on yield and phosphorus dynamics in cowpea. Environ Monit Assess 191, 223 (2019). https://doi.org/10.1007/s10661-019-7378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7378-3

Keywords

Navigation