Skip to main content

Advertisement

Log in

Urban effects in the sediment of an Intermittently Closed and Open Lagoon (ICOLL) in southeastern Brazil—a high-resolution study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

ICOLLs are extremely sensitive to human activities when it comes to sediment metal and nutrient enrichment. To better understand anthropogenic influences associated with Carapebus ICOLL basin historical land use based in Serra, Great Vitória, ES, Brazil, two sediment cores were studied for trace and major elements, organic matter, C/N ratios, total sulfur, and phosphorus. Two stratigraphic units could be found in the sediment cores, one that is related to urbanization, more specifically sewage discharges, and an older one of lithogenic origin with maritime influence. A transition period was also identified from terrestrial influence (upper plants), probably due to deforestation. The more recent stratigraphic unit is characterized by higher organic and metal contents, while the former one is sandy, enriched in detrital metals and calcite. We derived that the Carapebus ICOLL hydrological regime of recent years was changed by the land-use changes in the watershed, specifically due to a larger sediment loading and subsequent closure of the berm. An originally mesotrophic system, Carapebus Lagoon shows the first signs of eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aitkenhead, J. A., & McDowell, W. H. (2000). Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycles, 14, 127–138. https://doi.org/10.1029/1999GB900083.

    Article  CAS  Google Scholar 

  • Allanson, B. R., & Baird, D. (2008). Estuaries of South Africa. Cambridge: Cambridge University Press.

    Google Scholar 

  • ANA, Agência Nacional de Águas. (2017). Sewage Atlas [WWW Document]. URL http://atlasesgotos.ana.gov.br/. Accessed 17 Oct 2017.

  • Andrews, J. A., Johnson, J. E., Torbert, J. L., Burger, J. A., & Kelting, D. L. (1998). Minesoil properties associated with early height growth of eastern white pine. Journal of Environmental Quality, 27, 192–198.

    Article  CAS  Google Scholar 

  • Aspila, K. I., Agemian, H., & Chau, A. S. Y. (1976). A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst, 101, 187–197. https://doi.org/10.1039/an9760100187.

    Article  CAS  Google Scholar 

  • Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., & Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160(1-4), 83.

    Article  CAS  Google Scholar 

  • Battiston, G. A., Gerbasi, R., Degetto, S., & Sbrignadello, G. (1993). Heavy metal speciation in coastal sediments using total-reflection X-ray fluorescence spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 48(2), 217–221.

    Article  Google Scholar 

  • Bengtsson, L., Hellström, T., & Rakoczi, L. (1990). Redistribution of sediments in three Swedish lakes. Hydrobiologia, 192(2-3), 167–181.

    Article  Google Scholar 

  • Bernardello, M., Secco, T., Pellizzato, F., Chinellato, M., Sfriso, A., & Pavoni, B. (2006). The changing state of contamination in the lagoon of Venice. Part 2: Heavy metals. Chemosphere, 64, 1334–1345. https://doi.org/10.1016/J.CHEMOSPHERE.2005.12.033.

    Article  CAS  Google Scholar 

  • Birch, G. F. (2003). A test of normalization methods for marine sediment, including a new post-extraction normalization (PEN) technique. Hydrobiologia, 492(1-3), 5–13.

    Article  CAS  Google Scholar 

  • Birch, G. F., Gunns, T. J., & Olmos, M. (2015). Sediment-bound metals as indicators of anthropogenic change in estuarine environments. Marine Pollution Bulletin, 101, 243–257. https://doi.org/10.1016/J.MARPOLBUL.2015.09.056.

    Article  CAS  Google Scholar 

  • Boyd, R., Dalrymple, R., & Zaitlin, B. A. (1992). Classification of clastic coastal depositional environments. Sedimentary Geology, 80, 139–150. https://doi.org/10.1016/0037-0738(92)90037-R.

    Article  Google Scholar 

  • Bryan, G. W., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution, 76, 89–131. https://doi.org/10.1016/0269-7491(92)90099-V.

    Article  CAS  Google Scholar 

  • Burrus, D., Thomas, R. L., Dominik, B., Vernet, J.-P., & Dominik, J. (1990). Characteristics of suspended sediment in the upper rhone river, Switzerland, including the particulate forms of phosphorus. Hydrological Processes, 4, 85–98. https://doi.org/10.1002/hyp.3360040108.

    Article  Google Scholar 

  • Cappon, C. J. (1991). Sewage sludge as a source of environmental selenium. Science of the Total Environment, 100, 177–205.

    Article  CAS  Google Scholar 

  • Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., Prasad, M. V. R., Chakraborty, S., & Bhattacharya, B. D. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33, 346–356. https://doi.org/10.1016/j.envint.2006.11.013.

    Article  CAS  Google Scholar 

  • Costa, E. S., Grilo, C. F., Wolff, G. A., Thompson, A., Figueira, R. C. L., & Neto, R. R. (2015). Evaluation of metals and hydrocarbons in sediments from a tropical tidal flat estuary of Southern Brazil. Marine Pollution Bulletin, 92, 259–268. https://doi.org/10.1016/J.MARPOLBUL.2014.11.028.

    Article  CAS  Google Scholar 

  • Díez, E. G., Corella, J. P., Adatte, T., Thevenon, F., & Loizeau, J. L. (2017). High-resolution reconstruction of the 20th century history of trace metals, major elements, and organic matter in sediments in a contaminated area of Lake Geneva, Switzerland. Applied Geochemistry, 78, 1–11.

    Article  Google Scholar 

  • Dye, A. H. (2005). Meiobenthos in intermittently open/closed coastal lakes in New South Wales: spatial and temporal patterns in densities of major taxa. Marine and Freshwater Research, 56, 1055. https://doi.org/10.1071/MF05050.

    Article  Google Scholar 

  • Elwany, M. H. S., Flick, R. E., & Hamilton, M. M. (2003). Effect of a small Southern California lagoon entrance on adjacent beaches. Estuaries, 26, 700–708. https://doi.org/10.1007/BF02711981.

    Article  Google Scholar 

  • Ember, L., Williams, D., Morris, J.(1987). Processes that influence carbon isotope variations in salt marsh sediments. Marine Ecology Progress Series, 36, 33–42.

    Article  Google Scholar 

  • Esteves, F.A., 1998. Fundamentos de limnologia. Rio de Janeiro: Interciência.

  • Evans, R. D. (1994). Empirical evidence of the importance of sediment resuspension in lakes. Hydrobiologia, 284, 5–12. https://doi.org/10.1007/BF00005727.

    Article  Google Scholar 

  • Fadigas, F. S., Amaral Sobrinho, N. M. B., Anjos, L. H. C., & Mazur, N. (2010). Background levels of some trace elements in weathered soils from the Brazilian Northern region. Scientia Agricola, 67(1), 53–59.

    Article  CAS  Google Scholar 

  • Forstner, U., Patchineelam, S.R., 1980. Chemical associations of heavy metals in polluted sediments from the lower Rhine River. pp. 177–193. https://doi.org/10.1021/ba-1980-0189.ch007.

    Google Scholar 

  • Foster, I. D. L., & Charlesworth, S. M. (1996). Heavy metals in the hydrological cycle: trends and explanation. Hydrological Processes, 10, 227–261. https://doi.org/10.1002/(SICI)1099-1085(199602)10:2<227::AID-HYP357>3.0.CO;2-X.

    Article  Google Scholar 

  • Fujita, M., Ide, Y., Sato, D., Kench, P. S., Kuwahara, Y., Yokoki, H., & Kayanne, H. (2014). Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu. Chemosphere, 95, 628–634.

    Article  CAS  Google Scholar 

  • Gascón Díez, E., Corella, J. P., Adatte, T., Thevenon, F., & Loizeau, J.-L. (2017). High-resolution reconstruction of the 20th century history of trace metals, major elements, and organic matter in sediments in a contaminated area of Lake Geneva, Switzerland. Applied Geochemistry, 78, 1–11. https://doi.org/10.1016/J.APGEOCHEM.2016.12.007.

    Article  Google Scholar 

  • Gonneea, M. E., Paytan, A., & Herrera-Silveira, J. A. (2004). Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuarine, Coastal and Shelf Science, 61, 211–227. https://doi.org/10.1016/J.ECSS.2004.04.015.

    Article  CAS  Google Scholar 

  • Gonzalez Medeiros, J. J., Perez Cid, B., & Fernandez Gomez, E. (2005). Analytical phosphorus fractionation in sewage sludge and sediment samples. Analytical and Bioanalytical Chemistry, 381, 873–878. https://doi.org/10.1007/s00216-004-2989-z.

    Article  CAS  Google Scholar 

  • Graham, M. C., Eaves, M. A., Farmer, J. G., Dobson, J., & Fallick, A. E. (2001). A study of carbon and nitrogen stable isotope and elemental ratios as potential indicators of source and fate of organic matter in sediments of the forth estuary, Scotland. Estuarine, Coastal and Shelf Science, 52, 375–380. https://doi.org/10.1006/ECSS.2000.0742.

    Article  CAS  Google Scholar 

  • Gromaire, M. C., Garnaud, S., Saad, M., & Chebbo, G. (2001). Contribution of different sources to the pollution of wet weather flows in combined sewers. Water Research, 35(2), 521–533.

    Article  CAS  Google Scholar 

  • Haghani, S., Wesselingh, F. P., & Rose, N. L. (2016). Rapid evolution of coastal lagoons in response to human interference under rapid sea level change: a south Caspian Sea case study. Quaternary International, 408, 93–112. https://doi.org/10.1016/J.QUAINT.2015.12.005.

    Article  Google Scholar 

  • Haines, P. E., Tomlinson, R. B., & Thom, B. G. (2006). Morphometric assessment of intermittently open/closed coastal lagoons in New South Wales, Australia. Estuarine, Coastal and Shelf Science, 67, 321–332. https://doi.org/10.1016/J.ECSS.2005.12.001.

    Article  Google Scholar 

  • Håkanson, L., & Jansson, M. M. (2002). Principles of lake sedimentology. Caldwell: Blackburn Press.

    Google Scholar 

  • HRC – Healthy Rivers Commission Staff. (2002). Independent Inquiry into Coastal Lakes: Final Report (p. 74p). Sydney: Australia, NSW Healthy Rivers Commission.

    Google Scholar 

  • Helali, M. A., Oueslati, W., Zaaboub, N., Added, A., & Aleya, L. (2016). Bioavailability and assessment of heavy metal pollution in sediment cores off the Mejerda River Delta (Gulf of Tunis): How useful is a multiproxy approach? Marine Pollution Bulletin, 105, 215–226. https://doi.org/10.1016/J.MARPOLBUL.2016.02.027.

    Article  CAS  Google Scholar 

  • Hossain, M. K., Strezov, V., & Nelson, P. F. (2009). Thermal characterisation of the products of wastewater sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 85(1-2), 442–446.

    Article  CAS  Google Scholar 

  • Horowitz, A. J. (1995). The use of suspended sediment and associated trace elements in water quality studies. London: International Association of Hydrological Sciences.

    Google Scholar 

  • Jackson, J. A. (2005). Glossary of geology. Glossary of Geology, by JA Jackson. 2005 Approx. 900 p. 5th revised and enlarged ed. ISBN 3-540-27951-2. Berlin: Springer, p. 5th.

  • Jones, M. V., & West, R. J. (2005). Spatial and temporal variability of seagrass fishes in intermittently closed and open coastal lakes in southeastern Australia. Estuarine, Coastal and Shelf Science, 64, 277–288. https://doi.org/10.1016/J.ECSS.2005.02.021.

    Article  Google Scholar 

  • Kaushal, S., & Binford, M. W. (1999). Relationship between C: N ratios of lake sediments, organic matter sources, and historical deforestation in Lake Pleasant, Massachusetts, USA. Journal of Paleolimnology, 22(4), 439–442.

    Article  Google Scholar 

  • Kennish, M. J., & PAERL, H. W. (2010). Coastal lagoons: critical habitats of environmental change. Boca Raton: CRC PRESS.

    Book  Google Scholar 

  • Kjerfve, B. (1994). Coastal lagoon processes. Amsterdam: Elsevier.

    Google Scholar 

  • Koch, M. S., Benz, R. E., & Rudnick, D. T. (2001). Solid-phase phosphorus pools in highly organic carbonate sediments of Northeastern Florida Bay. Estuarine, Coastal and Shelf Science, 52, 279–291. https://doi.org/10.1006/ECSS.2000.0751.

    Article  CAS  Google Scholar 

  • Kukal, Z. (1971). Geology of recent sediments. Prague: Academia Publishing House of the Czechoslovak Academy of Sciences.

    Google Scholar 

  • Lawrie, R. A., Stretch, D. D., & Perissinotto, R. (2010). The effects of wastewater discharges on the functioning of a small temporarily open/closed estuary. Estuarine, Coastal and Shelf Science, 87, 237–245. https://doi.org/10.1016/J.ECSS.2010.01.020.

    Article  CAS  Google Scholar 

  • Lee, S., & Fuhrman, J. A. (1987). Relationships between Biovolume and Biomass of Naturally Derived Marine Bacterioplankton. Applied and Environmental Microbiology, 53, 1298–1303.

    CAS  Google Scholar 

  • Li, K., Liu, E., Zhang, E., Li, Y., Shen, J., & Liu, X. (2017). Historical variations of atmospheric trace metal pollution in Southwest China: reconstruction from a 150-year lacustrine sediment record in the Erhai Lake. Journal of Geochemical Exploration, 172, 62–70. https://doi.org/10.1016/J.GEXPLO.2016.10.009.

    Article  CAS  Google Scholar 

  • Liu, M., Hou, L. J., Xu, S. Y., Ou, D. N., Yang, Y., Yu, J., & Wang, Q. (2006). Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China. Marine Pollution Bulletin, 52, 1625–1633. https://doi.org/10.1016/J.MARPOLBUL.2006.06.008.

    Article  CAS  Google Scholar 

  • Machado, F. G. (2010). Aspectos morfodinâmicos e vulnerabilidade erosiva da praia de Carapebus, Serra – Espírito Santo. Espírito Santo: Universidade Federal do Espírito Santo.

    Google Scholar 

  • Maihara, V. A., Gonzaga, I. B., Silva, V. L., Fávaro, D. I. T., Vasconcellos, M. B. A., & Cozzolino, S. M. F. (2004). Daily dietary selenium intake of selected Brazilian population groups. Journal of Radioanalytical and Nuclear Chemistry, 259, 465–468. https://doi.org/10.1023/B:JRNC.0000020919.58559.dd.

    Article  CAS  Google Scholar 

  • Mansoor, S. Z., Louie, S., Lima, A. T., Van Cappellen, P., & MacVicar, B. (2018). The spatial and temporal distribution of metals in an urban stream: a case study of the Don River in Toronto, Canada. Journal of Great Lakes Research, 44, 1314–1326. https://doi.org/10.1016/j.jglr.2018.08.010.

    Article  CAS  Google Scholar 

  • Melo, V. F., Schaefer, C. E. G. R., Singh, B., Novais, R. F., & Fontes, M. P. F. (2002). Propriedades químicas e cristalográficas da caulinita e dos óxidos de ferro em sedimentos do grupo barreiras no município de Aracruz, estado do Espírito Santo. Revista Brasileira de Ciência do Solo, 26, 53–64. https://doi.org/10.1590/S0100-06832002000100006.

    Article  CAS  Google Scholar 

  • Niencheski, L. F., Windom, H. L., & Smith, R. (1994). Distribution of particulate trace metal in Patos Lagoon estuary (Brazil). Marine Pollution Bulletin, 28, 96–102. https://doi.org/10.1016/0025-326X(94)90545-2.

    Article  CAS  Google Scholar 

  • Norrström, A. C., & Jacks, G. (1998). Concentration and fractionation of heavy metals in roadside soils receiving de-icing salts. Science of the Total Environment, 218(2-3), 161–174.

    Article  Google Scholar 

  • Owens, P. N., & Walling, D. E. (2002). The phosphorus content of fluvial sediment in rural and industrialized river basins. Water Research, 36, 685–701. https://doi.org/10.1016/S0043-1354(01)00247-0.

    Article  CAS  Google Scholar 

  • Perissinotto, R. (2010). Temporarily open/closed estuaries in South Africa. Hauppauge: Nova Science Publishers.

    Google Scholar 

  • Phleger, F.B., 1981. A review of some general features of coastal lagoons. UNESCO Tech. Pap. Mar. Sci. (UNESCO). no. 33. 33.

  • Qiao, Y., Yang, Y., Zhao, J., Tao, R., & Xu, R. (2013). Influence of urbanization and industrialization on metal enrichment of sediment cores from Shantou Bay, South China. Environmental Pollution, 182, 28–36. https://doi.org/10.1016/J.ENVPOL.2013.06.044.

    Article  CAS  Google Scholar 

  • Ranville, M. A., Cutter, G. A., Buck, C. S., Landing, W. M., Cutter, L. S., Resing, J. A., & Flegal, A. R. (2010). Aeolian contamination of Se and Ag in the North Pacific from Asian fossil fuel combustion. Environmental Science & Technology, 44(5), 1587–1593.

    Article  CAS  Google Scholar 

  • Roy, P. S., Williams, R. J., Jones, A. R., Yassini, I., Gibbs, P. J., Coates, B., West, R. J., Scanes, P. R., Hudson, J. P., & Nichol, S. (2001). Structure and function of South-east Australian estuaries. Estuarine, Coastal and Shelf Science, 53, 351–384. https://doi.org/10.1006/ECSS.2001.0796.

    Article  Google Scholar 

  • Russell, M. A., Walling, D. E., Webb, B. W., & Bearne, R. (1998). The composition of nutrient fluxes from contrasting UK river basins. Hydrological Processes, 12, 1461–1482. https://doi.org/10.1002/(SICI)1099-1085(199807)12:9<1461::AID-HYP650>3.0.CO;2-6.

    Article  Google Scholar 

  • Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37, 1460–1482. https://doi.org/10.4319/lo.1992.37.7.1460.

    Article  CAS  Google Scholar 

  • Ruttenberg, K. C., & Goñi, M. A. (1997). Phosphorus distribution, C:N:P ratios, and δ13Coc in arctic, temperate, and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter. Marine Geology, 139, 123–145. https://doi.org/10.1016/S0025-3227(96)00107-7.

    Article  CAS  Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Science of the Total Environment, 281(1-3), 87–98.

    Article  CAS  Google Scholar 

  • Santos, J. M., Reis, N. C., Galvão, E. S., Silveira, A., Goulart, E. V., & Lima, A. T. (2017). Source apportionment of settleable particles in an impacted urban and industrialized region in Brazil. Environmental Science and Pollution Research, 24, 22026–22039. https://doi.org/10.1007/s11356-017-9677-y.

    Article  CAS  Google Scholar 

  • Seto, K. C., Fragkias, M., Güneralp, B., & Reilly, M. K. (2011). A meta-analysis of global urban land expansion. PLoS One, 6, e237–e277. https://doi.org/10.1371/journal.pone.0023777.

    Article  CAS  Google Scholar 

  • Thornton, S. F., & McManus, J. (1994). Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science, 38, 219–233. https://doi.org/10.1006/ECSS.1994.1015.

    Article  CAS  Google Scholar 

  • Tromp, K., Lima, A. T., Barendregt, A., & Verhoeven, J. T. A. (2012). Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2011.12.024.

    Article  CAS  Google Scholar 

  • US EPA, 1978. Methods for chemical analysis of water and wastes.

  • Valiela, I., Foreman, K., LaMontagne, M., Hersh, D., Costa, J., Peckol, P., DeMeo-Andreson, B., D’Avanzo, C., Babione, M., Sham, C.-H., Brawley, J., & Lajtha, K. (1992). Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts. Estuaries, 15, 443. https://doi.org/10.2307/1352389.

    Article  CAS  Google Scholar 

  • Van Rijn, L. C. (1993). Principles of sediment transport in rivers, estuaries, and coastal seas. Amsterdam: Aqua Publications.

    Google Scholar 

  • Wang, S., Jin, X., Pang, Y., Zhao, H., Zhou, X., & Wu, F. (2005). Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China. Journal of Colloid and Interface Science, 289, 339–346. https://doi.org/10.1016/J.JCIS.2005.03.081.

    Article  CAS  Google Scholar 

  • Watson, E. B., Pasternack, G. B., Gray, A. B., Goñi, M., & Woolfolk, A. M. (2013). Particle size characterization of historic sediment deposition from a closed estuarine lagoon, Central California. Estuarine, Coastal and Shelf Science, 126, 23–33. https://doi.org/10.1016/J.ECSS.2013.04.006.

    Article  Google Scholar 

  • Weiner, S., & Dove, P. M. (2003). An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 54, 1–29. https://doi.org/10.2113/0540001.

    Article  CAS  Google Scholar 

  • Whitfield, A. K. (1992). A characterization of southern african estuarine systems. Southern African Journal of Aquatic Sciences, 18, 89–103. https://doi.org/10.1080/10183469.1992.9631327.

    Article  Google Scholar 

  • Williams, J. D. H., Shear, H., & Thomas, R. L. (1980). Availability to Scenedesmus quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes. Limnology and Oceanography, 25(1), 1–11.

    Article  CAS  Google Scholar 

  • Xia, P., Meng, X., Yin, P., Cao, Z., & Wang, X. (2011). Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea. Environmental Pollution, 159(1), 92–99.

    Article  CAS  Google Scholar 

  • Yuan, C., Shi, J., He, B., Liu, J., Liang, L., & Jiang, G. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30, 769–783. https://doi.org/10.1016/J.ENVINT.2004.01.001.

    Article  CAS  Google Scholar 

  • Zhou, J., Wu, Y., Zhang, J., Kang, Q., & Liu, Z. (2006). Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere, 65, 310–317. https://doi.org/10.1016/J.CHEMOSPHERE.2006.02.026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Rubens (USP) for dating analysis; Dr. Elson and Prof. Marcos Tadeu (UFES) for the XRD analysis; Dr. Fernando Jacques (IBGE) for yielding important information about the area of study; and Clarissa Comérico and Livia for the cooperation in the laboratory experiments.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana T. Lima.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, N., Costa, E.S., Sá, F. et al. Urban effects in the sediment of an Intermittently Closed and Open Lagoon (ICOLL) in southeastern Brazil—a high-resolution study. Environ Monit Assess 191, 237 (2019). https://doi.org/10.1007/s10661-019-7358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7358-7

Keywords

Navigation