Skip to main content

Advertisement

Log in

Analyzing the effects of afforestation on estuarine environment of river Subarnarekha, India using geospatial technologies and participatory appraisals

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the Subarnarekha estuary of eastern India, deforestation remained a perpetual menace throughout the last century, thereby considerably augmenting the regional environmental vulnerability, especially in the wake of climate change–induced rise of sea levels. Like other similar areas, coastal afforestation had been widely implemented here as a prime measure of integrated coastal zone management. This study highlighted the impacts of such afforestation initiatives conducted in this area during the last 40 years by integrating geospatial information and community feedbacks. It was also a pioneering one in evaluating the level of sustainability achieved by these initiatives chiefly by analyzing their ability to attain the dual aims of environmental conservation and livelihood generation for the coastal communities. Results indicated that the detrimental effects of the continual removal of healthy mangrove and Pandanus tectorius stands could overwhelmingly be traced along the backshore areas and riverbanks. However, the scenario became better since 2008–2009 as both the dense mangroves and Casuarina plantations had experienced considerable areal increases primarily due to the renewed impetus on the Joint Forest Management and Social Forestry programs as well as regulation on shrimp aquaculture practices. Conversely, overall status of biodiversity and ecological composure remained alarmingly poor as many areas exhibited monospecific stands of Avicennia species. Accordingly, the study suggested establishment of appropriate zonal plantations based on species assemblage and utilities, bio-stabilization of coastal dunes, regulated grazing, enhanced community emancipation regarding usufruct sharing, and conflict resolution as the imperative measures for sustainable ecological restoration of this estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alongi, D. M. (2008). Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76(1), 1–13.

    Article  Google Scholar 

  • Bandyopadhyay, J. (2009). Water, ecosystems and society: a confluence of disciplines. India: SAGE Publications.

    Google Scholar 

  • Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169–193.

    Article  Google Scholar 

  • Barman, N. K., Chatterjee, S., & Paul, A. K. (2016). Coastal morphodynamics: integrated spatial modeling on the deltaic Balasore coast, India. Switzerland: Springer.

    Book  Google Scholar 

  • Boerema, A., & Meire, P. (2017). Management for estuarine ecosystem services: a review. Ecological Engineering, 98, 172–182.

    Article  Google Scholar 

  • Cahoon, D. R., Hensel, P. F., Spencer, T., Reed, D. J., McKee, K. L., & Saintilan, N. (2006). Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. In J. T. A. Verhoeven, B. Beltman, R. Bobbink, & D. F. Whigham (Eds.), Wetlands and natural resource management (pp. 271–292). Berlin: Springer.

    Chapter  Google Scholar 

  • Chakrabarti, P. (1995). Evolutionary history of the coastal quaternaries of the Bengal plain, India. Proceedings Indian National Science Academy Part A, 61, 343–354.

    Google Scholar 

  • Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Digital change detection methods in ecosystem monitoring: a review. International Journal of Remote Sensing, 25(9), 1565–1596.

    Article  Google Scholar 

  • Datta, D. (2018). Assessment of mangrove management alternatives in village-fringe forests of Indian Sunderbans: resilient initiatives or short-term nature exploitations? Wetlands Ecology and Management, 26(3), 399–413.

    Article  Google Scholar 

  • Datta, D., & Deb, S. (2012). Analysis of coastal land use/land cover changes in the Indian Sunderbans using remotely sensed data. Geo-spatial Information Science, 15(4), 241–250.

    Article  Google Scholar 

  • Datta, D., & Deb, S. (2017). Forest structure and soil properties of mangrove ecosystems under different management scenarios: xperiences from the intensely humanized landscape of Indian Sunderbans. Ocean and Coastal Management, 140, 22–33.

    Article  Google Scholar 

  • Disperati, L., & Virdis, S. G. P. (2015). Assessment of land-use and land-cover changes from 1965 to 2014 in Tam Giang-Cau Hai lagoon, Central Vietnam. Applied Geography, 58, 48–64.

    Article  Google Scholar 

  • Duncan, C., Owen, H. J., Thompson, J. R., Koldewey, H. J., Primavera, J. H., & Pettorelli, N. (2018). Satellite remote sensing to monitor mangrove forest resilience and resistance to sea level rise. Methods in Ecology and Evolution, 9(8), 1837–1852.

    Article  Google Scholar 

  • Dutta, D., Kundu, A., & Patel, N. R. (2013). Predicting agricultural drought in eastern Rajasthan of India using NDVI and standardized precipitation index. Geocarto International, 28(3), 192–209.

    Article  Google Scholar 

  • Dwarakish, G. S., Vinay, S. A., Natesan, U., Asano, T., Kakinuma, T., Venkataramana, K., Jagadeesha Pai, B., & Babita, M. K. (2009). Coastal vulnerability assessment of the future sea level rise in Udupi coastal zone of Karnataka state, west coast of India. Ocean and Coastal Management, 52(9), 467–478.

    Article  Google Scholar 

  • Elliott, M., & Quintino, V. (2007). The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine Pollution Bulletin, 54(6), 640–645.

    Article  CAS  Google Scholar 

  • Ellison, J. C., & Stoddart, D. R. (1991). Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. Journal of Coastal Research, 7(1), 151–165.

    Google Scholar 

  • Glaser, M. (2003). Interrelations between mangrove ecosystem, local economy and social sustainability in Caeté Estuary, North Brazil. Wetlands Ecology and Management, 11(4), 265–272.

    Article  Google Scholar 

  • Gordon, D. R. (1998). Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecological Applications, 8(4), 975–989.

    Article  Google Scholar 

  • Hansen, M. C., & Loveland, T. R. (2012). A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122, 66–74.

    Article  Google Scholar 

  • Iftekhar, M. S., & Islam, M. R. (2004). Managing mangroves in Bangladesh: a strategy analysis. Journal of Coastal Conservation, 10(1), 139–146.

    Article  Google Scholar 

  • Islam, M. R., Miah, M. G., & Inoue, Y. (2016). Analysis of land use and land cover changes in the coastal area of Bangladesh using Landsat imagery. Land Degradation and Development, 27(4), 899–909.

    Article  Google Scholar 

  • Kankara, R. S., Selvan, S. C., Rajan, B., & Arockiaraj, S. (2014). An adaptive approach to monitor the shoreline changes in ICZM framework: a case study of Chennai coast. Indian Journal of Geo-Marine Sciences, 43(7), 1266–1271.

    Google Scholar 

  • Kantakumar, L. N., & Neelamsetti, P. (2015). Multi-temporal land use classification using hybrid approach. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 289–295.

    Article  Google Scholar 

  • Kathiresan, K., & Rajendran, N. (2005). Coastal mangrove forests mitigated tsunami. Estuarine, Coastal and Shelf Science, 65(3), 601–606.

    Article  Google Scholar 

  • Kennish, M. J. (2002). Environmental threats and environmental future of estuaries. Environmental Conservation, 29(1), 78–107.

    Article  Google Scholar 

  • Kumar, T. S., Mahendra, R. S., Nayak, S., Radhakrishnan, K., & Sahu, K. C. (2010). Coastal vulnerability assessment for Orissa state, east coast of India. Journal of Coastal Research, 26(3), 523–534.

    Article  Google Scholar 

  • Kundu, A., Denis, D. M., Patel, N. R., & Dutta, D. (2018). A geo-spatial study for analysing temporal responses of NDVI to rainfall. Singapore Journal of Tropical Geography, 39(1), 107–116.

    Article  Google Scholar 

  • Lee, T. M., & Yeh, H. C. (2009). Applying remote sensing techniques to monitor shifting wetland vegetation: a case study of Danshui River estuary mangrove communities, Taiwan. Ecological Engineering, 35(4), 487–496.

    Article  Google Scholar 

  • Li, C., Wang, J., Wang, L., Hu, L., & Gong, P. (2014). Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sensing, 6(2), 964–983.

    Article  Google Scholar 

  • Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2008). Remote sensing and image interpretation. New York: John Wiley and Sons.

    Google Scholar 

  • Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., Kirby, M. X., Peterson, C. H., & Jackson, J. B. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312(5781), 1806–1809.

    Article  CAS  Google Scholar 

  • Marale, S. M. (2013). Strategies for coastal ecosystem management in India. Environment, Development and Sustainability, 15(1), 23–38.

    Article  Google Scholar 

  • McLusky, D. S., & Elliott, M. (2004). The estuarine ecosystem: ecology, threats and management. New York: Oxford University Press.

    Book  Google Scholar 

  • Memarsadeghi, N., Mount, D. M., Netanyahu, N. S., & Le Moigne, J. (2007). A fast implementation of the ISODATA clustering algorithm. International Journal of Computational Geometry and Applications, 17(01), 71–103.

    Article  Google Scholar 

  • Mitra, S., & Pattanayak, J. (2013). Studies on Lingula anatine (Brachiopoda: Inarculata) in Subarnarekha estuary, Odisha with special reference to habitat and population. Zoological Survey of India, 113(3), 49–53.

    Google Scholar 

  • Mukhopadhyay, A., Hazra, S., Mitra, D., Hutton, C., Chanda, A., & Mukherjee, S. (2016). Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal. Natural Hazards, 80(3), 1495–1513.

    Article  Google Scholar 

  • Murali, K. S., Sharma, M., Rao, R. J., Murthy, I. K., & Ravindranath, N. H. (2000). Status of participatory forest management in India: an analysis. In N. H. Ravindranath, K. S. Murali, & K. C. Malhotra (Eds.), Joint forest management and community forestry in India: an ecological and institutional assessment (pp. 25–58). New Delhi: Oxford & IBH.

    Google Scholar 

  • Niyogi, D. (1975). Quaternary geology of the coastal plain of West Bengal and Orissa. Indian Journal of Earth Science, 2(1), 51–61.

    Google Scholar 

  • OFSDP (2010). Orissa forest sector development project newsletter. 4(4). http://www.ofsds.in/Publication/Dec2010E.pdf. Accessed 5 Jan 2018.

  • Panda, S. S., Chaturvedi, N., Dhal, N. K., & Rout, N. C. (2013). An assessment of heavy metal accumulation in mangrove species of Bhitarkanika, Odisha, India. Research in Plant Biology, 3(6), 1–5.

    Google Scholar 

  • Pattanaik, C., & Prasad, S. N. (2011). Assessment of aquaculture impact on mangroves of Mahanadi delta (Orissa), east coast of India using remote sensing and GIS. Ocean and Coastal Management, 54(11), 789–795.

    Article  Google Scholar 

  • Pattanayak, M., & Nayak, B. P. (2003). Crop diversification in Orissa: a spatio-temporal analysis. Agricultural Situation in India, 65, 529–536.

    Google Scholar 

  • Pradhan, D., & Flaherty, M. (2007). National initiatives, local effects: trade liberalization, shrimp aquaculture, and coastal communities in Orissa, India. Society and Natural Resources, 21(1), 63–76.

    Article  Google Scholar 

  • Reddy, C. S., Jha, C. S., & Dadhwal, V. K. (2013). Assessment and monitoring of long-term forest cover changes in Odisha, India using remote sensing and GIS. Environmental Monitoring and Assessment, 185(5), 4399–4415.

    Article  Google Scholar 

  • Saenger, P., Hegerl, E. J., & Davie, J. D. (1983). Global status of mangrove ecosystems (3rd ed.). Switzerland: International Union for Conservation of Nature and Natural Resources.

    Google Scholar 

  • Schroeder, T. A., Cohen, W. B., Song, C., Canty, M. J., & Yang, Z. (2006). Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sensing of Environment, 103(1), 16–26.

    Article  Google Scholar 

  • Senapati, S., & Gupta, V. (2014). Climate change and coastal ecosystem in India: issues in perspectives. International Journal of Environmental Sciences, 5(3), 530–543.

    Google Scholar 

  • Serra, P., Pons, X., & Sauri, D. (2003). Post-classification change detection with data from different sensors: some accuracy considerations. International Journal of Remote Sensing, 24(16), 3311–3340.

    Article  Google Scholar 

  • Shalaby, A., & Tateishi, R. (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the northwestern coastal zone of Egypt. Applied Geography, 27(1), 28–41.

    Article  Google Scholar 

  • Tou, J. T., & Gonzalez, R. C. (1974). Pattern recognition principles. Reading: Addison-Wesley.

    Google Scholar 

  • Valiela, I., Bowen, J. L., & York, J. K. (2001). Mangrove forests: one of the world’s threatened major tropical environments. Bioscience, 51(10), 807–815.

    Article  Google Scholar 

  • Van Zuidam, R. A., Farifteh, J., Eleveld, M. A., & Tao, C. (1998). Developments in remote sensing, dynamic modelling and GIS applications for integrated coastal zone management. Journal of Coastal Conservation, 4(2), 191–202.

    Article  Google Scholar 

  • Zimmermann, T. G., Andrade, A. C., & Richardson, D. M. (2017). Abiotic barriers limit tree invasion but do not hamper native shrub recruitment in invaded stands. Biological Invasions, 19(1), 109–129.

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the assistance of EDC members and DFE staff of the study area during the field surveys.

Funding

This study received financial support (Fellowship Reference No. 3261/NET-JUNE 2015) extended by the University Grants Commission, India to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajit Datta.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A.K., Datta, D. Analyzing the effects of afforestation on estuarine environment of river Subarnarekha, India using geospatial technologies and participatory appraisals. Environ Monit Assess 190, 645 (2018). https://doi.org/10.1007/s10661-018-7030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7030-7

Keywords

Navigation