Skip to main content
Log in

Improved dissipation kinetic model to estimate permissible pre-harvest residue levels of pesticides in apples

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Prediction of residual concentrations of applied pesticides during the pre-harvest period may be required to ensure the safety of agricultural products. In this study, time-dependent dissipation trends of carbaryl (CB), kresoxim-methyl (KM), flubendiamide (FB), flufenoxuron (FN), bitertanol (BT), and chlorantraniliprole (CN) applied to apples at recommended and threefold greater doses were modeled to estimate pre-harvest residue limit concentrations (CPHRL) indicating permissible pesticide concentrations during the pre-harvest period. Double-exponential (DE) model results best fit the dissipation trends of all tested pesticides (correlation coefficients of 0.91–0.99) compared to zero-, first-, and second-order models. Among the pesticides examined, CB half-lives in apples of 2.9 and 6.6 days were the shortest, while those of FN (21.1–32.7 days) were the longest. The CPHRL values for each pesticide in apples were estimated with DE model parameter values and could be used to determine harvest dates for safe apples with pesticide concentrations below their maximum residue limits. Application of the DE model for CPHRL calculation provides more accurate information for farmers to produce agricultural products safe from pesticide residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Hamid, R. M., El-Sayed, W., & Ahmed, N. S. (2013). The relationship different formation types and the residue levels of pesticide on tomato fruits. Research Journal of Agriculture and Biological Sciences, 9, 8–16.

    CAS  Google Scholar 

  • Alister, C., Araya, M., Becerra, K., Saavedra, J., & Kogan, M. (2017). Preharvest interval periods and their relation to fruit growth stages and pesticide formulations. Food Chemistry, 221, 548−554.

    Article  CAS  Google Scholar 

  • Banerjee, K., Oulkar, D. P., Patil, S. H., Dasgupta, S., & Adsule, P. G. (2008). Degradation kinetics and safety evaluation of tetraconazole and difenoconazole residue in grape. Pest Management Science, 64, 283−289.

    Article  CAS  Google Scholar 

  • Bhat, M., Wani, A. A., Mukhtar, M., Sherwani, A., Bhat, A. H., & Showkat, A. (2015). Dissipation patterns of the fungicide difenoconazole (25% EC) in apples grown in Kashmir, India. Environmental Monitoring and Assessment, 187, 398.

    Article  CAS  Google Scholar 

  • Cabras, P., Angioni, A., Garau, V. L., Mells, M., Pirisi, F. M., Cabitza, F., et al. (1998). Pesticide residues on field-sprayed apricots and in apricot drying processes. Journal of Agricultural Food Chemistry, 46, 2306−2308.

    Google Scholar 

  • Chai, L. K., Mohd-Tahir, N., & Hansen, H. C. B. (2009). Dissipation of acephate, chlorpyrifos, cypermethrin and their metabolites in a humid-tropical vegetable production system. Pest Management Science, 65, 189−196.

    Article  CAS  Google Scholar 

  • Chen, X. J., Ren, Y. J., Meng, Z. Y., Lu, C. L., Gu, H. T., & Zhuang, Y. Q. (2016). Dissipation kinetics, safety evaluation, and preharvest interval assessment of trichlorfon application on rice. Environmental Monitoring and Assessment, 188, 266.

    Article  CAS  Google Scholar 

  • Chung, H. S., Kabir, M. H., El-Aty, A. M. A., Lee, H. S., Rahman, M. M., Chang, B. J., et al. (2017). Dissipation kinetics and pre-harvest residue limit of pyriofenone in oriental melon (Cucumis melo Var. makuwa) grown under regulated climatic conditions. Biomedical Chromatography. https://doi.org/10.1002/bmc.3965.

  • Delcour, I., Spanoghe, P., & Uyttendaele, M. (2015). Literature review: impact of climate change on pesticide use. Food Research International, 68, 7–15.

    Article  Google Scholar 

  • Dong, F., Xu, J., Liu, X., Li, J., Li, Y., Kong, Z., et al. (2011). Determination of chlorantraniliprole residues in corn and soil by UPLC−ESI−MS/MS and its application to a pharmacokinetic study. Chromatographia, 74, 399–406.

    Article  CAS  Google Scholar 

  • European Commission. (2017). Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed (Report No. SANTE/11813/2017). https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf. Accessed 30 Dec 2017.

  • Geed, S. R., Shrirame, B. S., Singh, R. S., & Rai, B. N. (2017). Assessment of pesticide removal using two-stage integrated aerobic treatment plant (IATP) by Bacillus sp. isolated from agricultural field. Bioresource Technology, 242, 45–54.

    Article  CAS  Google Scholar 

  • Hassanzadeh, N., Bahramifar, N., & Esmaili-Sari, A. (2010). Residue content of carbaryl applied on greenhouse cucumbers and its reduction by duration of a pre-harvest interval and post-harvest household processing. Journal of the Science of Food and Agriculture, 90, 2249–2253.

    Article  CAS  Google Scholar 

  • Hu, R., Huang, X., Huang, J., Li, Y., Zhang, C., Yin, Y., Chen, Z., Jin, Y., Cai, J., & Cui, F. (2015). Long- and short-term health effects of pesticide exposure: a cohort study from China. PLoS One, 10, e0128766. https://doi.org/10.1371/journal.pone.0128766.

    Article  CAS  Google Scholar 

  • Hwang, J. I., & Kim, J. E. (2013). Residue patterns of fungicides, flusilazole and myclobutanil in apples. Current Research on Agriculture and Life Sciences, 31, 272–279.

    Article  Google Scholar 

  • Hwang, J. I., Lee, S. E., & Kim, J. E. (2015a). Plant uptake and distribution of endosulfan and its sulfate metabolite persisted in soil. PLoS One, 10, e0141728. https://doi.org/10.1371/journal.pone.0141728.

    Article  CAS  Google Scholar 

  • Hwang, K. W., Bang, W. S., Jo, H. W., & Moon, J. K. (2015b). Dissipation and removal of the etofenprox residue during processing in spring onion. Journal of Agricultural and Food Chemistry, 63, 6675–6680.

    Article  CAS  Google Scholar 

  • IUPAC. 2017. Global availability of information on agrochemicals. http://sitem.herts.ac.uk/aeru/iupac/atoz.htm. Accessed 30 Dec 2017.

  • Jang, J., Rahman, M. M., Ko, A. Y., El-Aty, A. M. A., Park, J. H., Cho, S. K., et al. (2014). A matrix sensitive gas chromatography method for the analysis of pymetrozine in red pepper: application to dissipation pattern and PHRL. Food Chemistry, 146, 448–454.

    Article  CAS  Google Scholar 

  • Kabir, M. H., El-Aty, A. M. A., Rahman, M. M., Chung, H. S., Lee, H. S., Park, S. H., et al. (2017a). Dissipation pattern and risk quotients assessment of amisulbrom in Korean melon cultivated in plastic house conditions. Environmental Monitoring and Assessment, 198, 302.

    Article  CAS  Google Scholar 

  • Kabir, M. H., El-Aty, A. M. A., Rahman, M. M., Kim, S. W., Choi, J. H., Lee, Y. J., et al. (2017b). The disappearance rate and risk assessment of thiacloprid residues in Asian pear using liquid chromatography confirmed with tandem mass spectrometry. Biomedical Chromatography, 31. https://doi.org/10.1002/bmc.3861.

  • Kim, D. S., Kim, K. J., Kim, H. N., Kim, J. Y., & Hur, J. H. (2014). Determination of pre-harvest residue limits of pesticides metalaxyl-M and flusilazole in oriental melon. The Korean Journal of Pesticide Science, 18, 1–7.

    Article  Google Scholar 

  • Kim, S. W., Rahman, M. M., El-Aty, A. M. A., Truong, L. T. B., Choi, J. H., Park, J. S., et al. (2016). Residue level and dissipation pattern of lepimectin in shallots using high-performance liquid chromatography coupled with photodiode array detection. Biomedical Chromatography, 30, 1835–1842. https://doi.org/10.1002/bmc.3759.

    Article  CAS  Google Scholar 

  • Korea Crop Protection Association. (2011). Agrochemicals use guide book on 2011. Korea Crop Protection Association, Korea.

  • Korea Crop Protection Association. (2012). Agrochemicals use guide book on 2012. Korea Crop Protection Association, Korea.

  • Liang, H., Qiu, J., Li, L., Li, W., Zhou, Z., Liu, F., et al. (2012). Stereoselective dissipation of epoxiconazole in grape (Vitis vinifera cv. Kyoho) and soil under field conditions. Chemosphere, 87, 982–987.

    Article  CAS  Google Scholar 

  • Macbean, C. (2012). The pesticide manual, Sixteenth Edition. Alton: British Crop Production Council.

    Google Scholar 

  • Ministry of Food and Drug Safety. (2017a). Standards for hazardous substance residues in agricultural products during pre-harvest period. http://www.mfds.go.kr/index.do?x=0&searchkey=title:contents&mid=1013&searchword=생산단계 농산물 등의 유해물질 잔류기준&y=0&division=&pageNo=1&seq=11019&sitecode=2017–11-16&cmd=v. Accessed 30 Dec 2017.

  • Ministry of Food and Drug Safety (2017b). Pesticides and Veterinary Drugs Information. http://www.foodsafetykorea.go.kr/residue/main.do. Accessed 30 Dec 2017.

  • Moon, H. R., Park, J. H., Yoon, J. Y., Na, E. S., & Lee, K. S. (2013). Establishment of pre-harvest residue limits (PHRLs) of fungicides fenarimol and insecticide flufenoxuron in peaches during cultivation period. Korean Journal of Environmental Agriculture, 32, 136–141.

    Article  Google Scholar 

  • Oulkar, D. P., Banerjee, K., Patil, S. H., Upadhyay, A. K., Taware, P. B., Deshmukh, M. D., et al. (2009). Degradation kinetics and safety evaluation of buprofezin residues in grape (Vitis vinifera L.) and three different soils of India. Pest Management Science, 65, 183−188.

    Article  CAS  Google Scholar 

  • Park, J. H., Park, J. S., El-Aty, A. M. A., Rahman, M. M., Na, T. W., & Shim, J. H. (2013). Analysis of imidacloprid and pyrimethanil in shallot (Allium ascalonicum) grown under greenhouse conditions using tandem mass spectrometry: establishment of pre-harvest residue limits. Biomedical Chromatography, 27, 451–457. https://doi.org/10.1002/bmc.2812.

    Article  CAS  Google Scholar 

  • Perdue University. (2016). Preharvest intervals. https://vegcropshotline.org/article/preharvest-intervals/ Accessed 05 Jan 2018.

  • Rahman, M. M., Farha, W., El-Aty, A. M. A., Kabir, M. H., Im, S. J., Jung, D. I., et al. (2015). Dynamic behaviour and residual pattern of thiamethoxam and its metabolite clothianidin in Swiss chard using liquid chromatography–tandem mass spectrometry. Food Chemistry, 174, 248–255.

    Article  CAS  Google Scholar 

  • Ramezani, M. K., & Shahriari, D. (2015). Dissipation behavior, processing factors and risk assessment for metalaxyl in greenhouse-grown cucumber. Pest Management Science, 71, 579–583.

    Article  CAS  Google Scholar 

  • Sabale, R., Shabeer, T. P. A., Utture, S. C., Banerjee, K., Jadhav, M. R., Oulkar, D. P., et al. (2014). Dissipation kinetics, safety evaluation, and assessment of pre-harvest interval (PHI) and processing factor for kresoxim methyl residues in grape. Environmental Monitoring and Assessment, 186, 2369–2374.

    Article  CAS  Google Scholar 

  • Szpyrka, E., Matyaszek, A., & Slowik-Borowiec, M. (2017). Dissipation of chlorantraniliprole, chlorpyrifos-methyl and indoxacarb−insecticides used to control codling moth (Cydia Promonella L.) and leafrollers (Tortricidae) in apples for production of baby food. Environmental Science and Pollution Research, 24, 12128–12135.

    Article  CAS  Google Scholar 

  • Ugare, B., Banerjee, K., Ramteke, S. D., Pradhan, S., Oulkar, D. P., Utture, S. C., et al. (2013). Dissipation kinetics of forchlorfenuron, 6-benzyl aminopurine, gibberellic acid and ethephon residues in table grapes (Vitis vinifera). Food Chemistry, 141, 4208–4214.

    Article  CAS  Google Scholar 

  • US Food and Drug Administration. (2017). Pesticide residue monitoring program. http://www.fao.org/fao-who-codexalimentarius/standards/pestres/pesticides/en/. Accessed 30 Dec 2017.

  • Utture, S. C., Banerjee, K., Dasgupta, S., Patil, S. H., Jadhav, M. R., Wagh, S. S., et al. (2011). Dissipation and distribution behavior of azoxystrobin, carbendazim, and difenoconazole in pomegranate fruits. Journal of Agricultural and Food Chemistry, 59, 7866–7873.

    Article  CAS  Google Scholar 

  • Wise, J. C., Jenkins, P. E., Schilder, A. M. C., Vandervoort, C., & Isaacs, R. (2010). Sprayer type and water volume influence pesticide deposition and control of insect pests and diseases in juice grapes. Crop Protection, 29, 378–385.

    Article  CAS  Google Scholar 

  • Zelená, V., & Veverka, K. (2007). Effect of surfactants and liquid fertilisers on transcuticular penetration of fungicides. Plant Protection Science, 43, 151–156.

    Article  Google Scholar 

  • Zhu, X., Jia, C., Duan, L., Zhang, W., Yu, P., He, M., et al. (2016). Residue behavior and dietary intake risk assessment of three fungicides in tomatoes (Lycopersicon esculentum Mill.) under greenhouse conditions. Regulatory Toxicology and Pharmacology, 81, 284–287.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by 2018 research fund from the Kyungpook National University, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang-Eok Kim.

Electronic supplementary material

ESM 1

The supporting information contains seven tables and two figures describing the properties of the pesticides, methods of pesticide application in the field trials, clean-up and instrumental conditions in the pesticide residue analysis, validation results for pesticide analysis method, correlations and parameters of applied kinetic models, and estimated PHRL values. (DOCX 459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, JI., Kim, HY., Lee, SH. et al. Improved dissipation kinetic model to estimate permissible pre-harvest residue levels of pesticides in apples. Environ Monit Assess 190, 438 (2018). https://doi.org/10.1007/s10661-018-6819-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6819-8

Keywords

Navigation