Skip to main content
Log in

Carbon and nitrogen mineralization in Vertisol as mediated by type and placement method of residue

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Selection of appropriate residue application method is essential for better use of biomass for soil and environmental health improvement. A laboratory incubation experiment was conducted for 75 days to investigate C and N mineralization of residues of soybean (Glycine max L.), chickpea (Cicer arietinum L.), maize (Zea mays L.), and wheat (Triticum aestivum L.) placed on the soil surface and incorporated into the soil. The residue of soybean and chickpea had a greater decomposition rate than that of maize and wheat, despite of their placements. Higher rate of decomposition of the residue of soybean and chickpea was recorded when it was kept on the soil surface while soil incorporation of residue of wheat and maize resulted in faster decomposition. Therefore, these findings could be used as guidelines for management of crop residue application in farmland to improve soil and environmental quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abiven, S., & Recous, S. (2007). Mineralization of crop residues on the soil surface or incorporated in the soil under controlled conditions. Biology and Fertility of Soils, 43, 849–852.

    Article  CAS  Google Scholar 

  • Angers, D. A., & Recous, S. (1997). Decomposition of wheat straw and rye residues as affected by particle size. Plant and Soil, 189, 197–203.

    Article  CAS  Google Scholar 

  • Bremer, E., Van Houtum, W., & Van Kessel, C. (1991). Carbon dioxide evolution from wheat and lentil residues as affected by grinding, added nitrogen, and the absence of soil. Biology and Fertility of Soils, 11, 221–227.

    Article  Google Scholar 

  • Coppens, F., Garnier, P., De Gryze, S., Merckx, R., & Recous, S. (2006). Soil moisture, carbon and nitrogen dynamics following incorporation and surface application of labelled crop residues in soil columns. European Journal of Soil Science, 57, 894–905.

    Article  CAS  Google Scholar 

  • Deng, S. P., & Tabatabai, M. A. (1996). Effect of tillage and residue management on enzyme activities in soils. Biology and Fertility of Soils, 22, 208–213.

    Article  CAS  Google Scholar 

  • Dinesh, R., Chaudhuri, S., Ganeshamurthy, A., & Pramanik, S. (2004). Biochemical properties of soils of undisturbed and disturbed mangrove forests of South Andaman (India). Wetlands Ecology and Management, 12, 309–320.

    Article  CAS  Google Scholar 

  • Dotaniya, M. L., & Datta, S. C. (2014). Impact of bagasse and press mud on availability and fixation capacity of phosphorus in an Inceptisol of north India. Sugar Tech, 16(1), 109–112.

    Article  CAS  Google Scholar 

  • Dotaniya, M. L., & Meena, V. D. (2013). Rhizosphere effect on nutrient availability in soil and its uptake by plants -a review. Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 85(1), 1–12.

    Google Scholar 

  • Dotaniya, M. L., Datta, S. C., Biswas, D. R., & Meena, B. P. (2013a). Effect of solution phosphorus concentration on the exudation of oxalate ions by wheat (Triticum aestivum L.). Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 83(3), 305–309.

    Article  CAS  Google Scholar 

  • Dotaniya, M. L., Prasad, D., Meena, H. M., Jajoria, D. K., Narolia, G. P., Pingoliya, K. K., Meena, O. P., Kumar, K., Meena, B. P., Ram, A., Das, H., Chari, M. S., & Pal, S. (2013b). Influence of phytosiderophore on iron and zinc uptake and rhizospheric microbial activity. African Journal of Microbiology Research, 7(51), 5781–5788.

    Article  CAS  Google Scholar 

  • Dotaniya, M. L., Datta, S. C., Biswas, D. R., & Kumar, K. (2014a). Effect of organic sources on phosphorus fractions and available phosphorus in Typic Haplustept. Journal of the Indian Society of Soil Science, 62(1), 80–83.

    Google Scholar 

  • Dotaniya, M. L., Datta, S. C., Biswas, D. R., Meena, H. M., & Kumar, K. (2014b). Production of oxalic acid as influenced by the application of organic residue and its effect on phosphorus uptake by wheat (Triticum aestivum L.) in an Inceptisol of north India. National Academy Science Letters, 37(5), 401–405.

    Article  CAS  Google Scholar 

  • Dotaniya, M. L., Datta, S. C., Biswas, D. R., Meena, H. M., Rajendiran, S., & Meena, A. L. (2015). Phosphorus dynamics mediated by bagasse, press mud and rice straw in Inceptisol of North India. Agrochimica, 59(4), 358–369.

    Google Scholar 

  • Dotaniya, M. L., Datta, S. C., Biswas, D. R., Dotaniya, C. K., Meena, B. L., Rajendiran, S., Regar, K. L., & Lata, M. (2016). Use of sugarcane industrial byproducts for improving sugarcane productivity and soil health-a review. International Journal of Recycling of Organic Waste in Agriculture, 185(3), 185–194.

    Article  Google Scholar 

  • Dotaniya, M. L., Rajendiran, S., Meena, V. D., Saha, J. K., Coumar, M. V., Kundu, S., & Patra, A. K. (2017). Influence of chromium contamination on carbon mineralization and enzymatic activities in Vertisol. Agriculture Research, 6(1), 91–96.

    Article  CAS  Google Scholar 

  • Gadde, B., Bonnet, S., Menke, C., & Garivait, S. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 157, 1554–1558.

    Article  CAS  Google Scholar 

  • Giacomini, S. J., Recous, S., Mary, B., & Aita, C. (2007). Simulating the effects of N availability, straw particle size and location in soil on C and N mineralization. Plant and Soil, 301, 289–301.

    Article  CAS  Google Scholar 

  • Gomez, K.A., & Gomez, A. (1983). Statistical procedures for agricultural research, 2nd edn. Wiley, New York.

  • Guntinas, M. E., Leirós, M. C., Trasar-Cepeda, C., & Gil-Sotres, F. (2001). Effects of moisture and temperature on net soil nitrogen mineralization: a laboratory study. European Journal of Soil Biology, 48, 73–80.

    Article  CAS  Google Scholar 

  • Kushwah, S. K., Dotaniya, M. L., Upadhyay, A. K., Rajendiran, S., Coumar, M. V., Kundu, S., & Rao, A. S. (2014). Assessing carbon and nitrogen partition in kharif crops for their carbon sequestration potential. National Academy Science Letters, 37(3), 213–217.

    Article  CAS  Google Scholar 

  • Li, L. J., Han, X. Z., You, M. Y., Yuan, Y. R., Ding, X. L., & Qiao, Y. F. (2013). Carbon and nitrogen mineralization patterns of two contrasting crop residues in a Mollisol: effects of residue type and placement in soils. European Journal of Soil Biology, 54, 1–6.

    Article  CAS  Google Scholar 

  • Lynch, M. J., Mulvaney, M. J., Hodges, S. C., Thompson, T. L., & Thomason, W. E. (2016). Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti. Springerplus, 5(1), 973–981.

    Article  CAS  Google Scholar 

  • Majumder, B., & Kuzyakov, Y. (2010). Effect of fertilization on decomposition of 14C labelled plant residues and their incorporation into soil aggregates. Soil & Tillage Research, 109, 94–102.

    Article  Google Scholar 

  • Marmo, L. (2008). EU strategies and policies on soil and waste management to offset greenhouse gas emissions. Waste Management, 28, 685–689.

    Article  CAS  Google Scholar 

  • Mary, B., Recous, S., Drawls, D., & Robin, D. (1996). Interaction between decomposition of plant residue and nitrogen cycling in soil. Plant and Soil, 181, 71–82.

    Article  CAS  Google Scholar 

  • Mengel, K. (1996). Turnover of organic nitrogen in soil and its availability to crops. Plant and Soil, 181, 83–93.

    Article  CAS  Google Scholar 

  • Prajapati, K., Rajendiran, S., Coumar, M. V., Dotaniya, M. L., Ajay, Kundu, S., Saha, J. K., & Patra, A. K. (2016). Carbon occlusion potential of rice phytoliths: implications for global carbon cycle and climate change mitigation. Applied Ecology and Environmental Research, 14(2), 265–281.

    Article  Google Scholar 

  • Singh, D., Chhonkar, P.K., & Pandey, R.N. (2005). Soil plant water analysis: a methods manual. New Delhi: Westville.

  • Vestgarden, L. S. (2001). Carbon and nitrogen turnover in the early stage of scots pine (Pinus sylvestris L.) needle litter decomposition: effect of internal and external nitrogen. Soil Biology and Biochemistry, 33, 465–474.

    Article  CAS  Google Scholar 

  • Zibilske, L. M., & Bradford, J. M. (2007). Oxygen effects on carbon, polyphenols, and nitrogen mineralization potential in soil. Soil Science Society of America Journal, 71, 133–139.

    Article  CAS  Google Scholar 

  • Zibilski, L.M. (1994). Carbon mineralization. In: Bingham JM, Mickelson SH (eds) Method of soil analysis, part 2. Microbiological and biochemical properties. SSSA book series no. 5. ASA, SSSA, Madison.

Download references

Acknowledgements

The authors are highly thankful to the Director, HOD and technical staff of the Division of Soil Chemistry & Fertility, ICAR-IISS and equally grateful to the Director, ICAR-IIPR, Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R L Jat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jat, R.L., Jha, P., Dotaniya, M.L. et al. Carbon and nitrogen mineralization in Vertisol as mediated by type and placement method of residue. Environ Monit Assess 190, 439 (2018). https://doi.org/10.1007/s10661-018-6785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6785-1

Keywords

Navigation