Skip to main content

Advertisement

Log in

Spatial modeling of rat bites and prediction of rat infestation in Peshawar valley using binomial kriging with logistic regression

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, we propose to develop a geostatistical computational framework to model the distribution of rat bite infestation of epidemic proportion in Peshawar valley, Pakistan. Two species Rattus norvegicus and Rattus rattus are suspected to spread the infestation. The framework combines strengths of maximum entropy algorithm and binomial kriging with logistic regression to spatially model the distribution of infestation and to determine the individual role of environmental predictors in modeling the distribution trends. Our results demonstrate the significance of a number of social and environmental factors in rat infestations such as (I) high human population density; (II) greater dispersal ability of rodents due to the availability of better connectivity routes such as roads, and (III) temperature and precipitation influencing rodent fecundity and life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali, A., Fatima, S.H., Zaidi, F., Ullah, S. (2017). Determining spatial distribution of screwworm Chrysomya bezziana larvae with kriging using presence only data. Submitted to Environmental Monitoring and Assessment, page (Under rewiew).

  • Barbet-Massin, M., Jiguet, F., Albert, C. H., Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3(2), 327–338.

    Article  Google Scholar 

  • Childs, J.E., McLafferty, S.L., Sadek, R., Miller, G.L., Khan, A.S., DuPree, E.R., Advani, R., Glass, G.E. (1998). Epidemiology of rodent bites and prediction of rat infestation in New York City. American Journal of Epidemiology, 148(1), 78–87.

    Article  CAS  Google Scholar 

  • Chomel, B.B. (1992). Zoonoses of house pets other than dogs, cats and birds. The Pediatric Infectious Disease Journal, 11(6), 479–487.

    Article  CAS  Google Scholar 

  • Christensen, O., & Ribeiro, P. Jr. (2002). geoRglm—a package for generalised linear spatial models. R-NEWS, 2(2), 26–28. ISSN 1609-3631.

    Google Scholar 

  • Civen, R., & Ngo, V. (2008). Murine typhus: an unrecognized suburban vectorborne disease. Clinical Infectious Diseases, 46(6), 913–918.

    Article  Google Scholar 

  • Clinton, J.M. (1969). Rats in urban America. Public Health Reports, 84(1), 1–7.

    Article  CAS  Google Scholar 

  • Costa, F., Hagan, J.E., Calcagno, J., Kane, M., Torgerson, P., Martinez-Silveira, M.S., Stein, C., Abela-Ridder, B., Ko, A.I. (2015). Global morbidity and mortality of leptospirosis: a systematic review. PLOS Neglected Tropical Diseases, 9(9), 1–19.

    Article  Google Scholar 

  • Costa, F., Ribeiro, G.S., Felzemburgh, R.D.M., Santos, N., Reis, R.B., Santos, A.C., Fraga, D.B.M., Araujo, W.N., Santana, C., Childs, J.E., Reis, M.G., Ko, A.I. (2014). Influence of household rat infestation on leptospira transmission in the urban slum environment. PLOS Neglected Tropical Diseases, 8(12), 1–8.

    Article  Google Scholar 

  • Cromley, E.K., & McLafferty, S.L. (2011). GIS in public health, 2nd edn. New York: Guilford Press.

    Google Scholar 

  • Diggle, P.J., & Ribeiro, P.J. (2007). Model-based geostatistics (Springer Series in Statistics). Springer series in statistics, 1st edn. New York: Springer.

    Google Scholar 

  • Easterbrook, J., Shields, T., Klein, S., Glass, G. (2005). Norway rat population in Baltimore, Maryland, 2004. Vector-Borne and Zoonotic Diseases, 5(3), 296–299.

    Article  Google Scholar 

  • Fatima, S.H., Zaidi, F., Adnan, M., Ali, A., Jamal, Q., Khisroon, M. (2017). Rat-bites of an epidemic proportion in Peshawar Vale; a GIS-based approach in risk assessment. Submitted to Environmental Monitoring and Assessment, page (Under rewiew).

  • Gilchrist, G.W. (1995). Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. The American Naturalist, 146(2), 252–270.

    Article  Google Scholar 

  • Githeko, A.K., Lindsay, S.W., Confalonieri, U.E., Patz, J.A. (2000). Climate Change and vector-borne diseases: a regional analysis. Bull World Health Organ, 78, 1136–47.

    CAS  Google Scholar 

  • Glass, G.E. (2009). Update: spatial aspects of epidemiology: the interface with medical geography. Epidemiologic reviews, 22(1), 136–9.

    Article  Google Scholar 

  • Glass, G.E., Gardner-Santana, L.C., Holt, R.D., Chen, J., Shields, T.M., Roy, M., Schachterle, S., Klein, S.L. (2009). Trophic garnishes: Cat–rat interactions in an urban environment. PLOS ONE, 4(6), 1–7.

    Article  Google Scholar 

  • Hengl, T. (2009). A practical guide to geostatistical mapping, 2nd edn. Amsterdam: University of Amsterdam.

    Google Scholar 

  • Hengl, T. (2017). GSIF: Global soil information facilities. R package version 0.5-4.

  • Hengl, T., Sierdsema, H., Radović, A., Dilo, A. (2009). Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, {ENFA} and regression-kriging. Ecological Modelling, 220(24), 3499–3511.

    Article  Google Scholar 

  • Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25(15), 1965–1978.

    Article  Google Scholar 

  • Himsworth, C.G., Parsons, K.L., Jardine, C., Patrick, D.M. (2013). Rats, cities, people, and pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector borne and zoonotic diseases, 13(6), 349–59.

    Article  Google Scholar 

  • Khan, R., & Khan, M.A. (2012). Nutritional quantification of four common broad leaved weeds consume as a food source in war-affected ID PS camps in Peshawar, Pakistan. Agriculture, Science and Engineering (ICASE2012), pp. 39.

  • Li, W., Guo, Q., Elkan, C. (2011). Can we model the probability of presence of species without absence data? Ecography, 34(6), 1096–1105.

    Article  Google Scholar 

  • Lima, M., Marquet, P.A., Jaksic, F.M. (1999). El nino events, precipitation patterns, and rodent outbreaks are statistically associated in semiarid Chile. Ecography, 22(2), 213–218.

    Article  Google Scholar 

  • Lore, R.K., & Schultz, L.A. (1989). The ecology of wild rats: applications in the laboratory. Dordrecht: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • MacKenzie, D.I., & Royle, J.A. (2005). Designing occupancy studies: general advice and allocating survey effort. Journal of applied Ecology, 42(6), 1105–1114.

    Article  Google Scholar 

  • McKee, G., & Pewarchuk, J. (2013). Rat-bite fever. Canadian Medical Association Journal, 185 (15), 1346–1346.

    Article  Google Scholar 

  • Meerburg, B.G., Singleton, G.R., Kijlstra, A. (2009). Rodent-borne diseases and their risks for public health. Critical Reviews in Microbiology, 35(3), 221–270. PMID: 19548807.

    Article  Google Scholar 

  • Meyer, A. (2003). Urban commensal rodent control: fact or fiction? ACIAR Monograph Series, 96, 446–450.

    Google Scholar 

  • Millar, A. (2002). Subset selection in regression, 2nd edn. London: Chapman and Hall/CRC.

    Book  Google Scholar 

  • Miller, J., Franklin, J., Aspinall, R. (2007). Incorporating spatial dependence in predictive vegetation models. Ecological Modelling, 202(3), 225–242.

    Article  Google Scholar 

  • Perry, T., Matsui, E., Merriman, B., Duong, T., Eggleston, P. (2003). The prevalence of rat allergen in inner-city homes and its relationship to sensitization and asthma morbidity. Journal of Allergy and Clinical Immunology, 112(2), 346–352.

    Article  Google Scholar 

  • Phillips, S.J., Anderson, R.P., Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3), 231–259.

    Article  Google Scholar 

  • Phillips, S.J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175.

    Article  Google Scholar 

  • Phillips, S.J., Dudík, M., Schapire, R.E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83): ACM.

  • R Core Team. (2017). R: a language and environment for statistical computing R foundation for statistical computing, Vienna, Austria.

  • Rahim, T., Zeb, A., Shaukat, S. (2007). Urbanization in North West Frontier Province. Sarhad Journal of Agriculture, 23(1), 233.

    Google Scholar 

  • Ribeiro, P.J. Jr, Christensen, O.F., Diggle, P.J. (2003). Geor and geoRglm: software for model-based geostatistics, pages 517–524. Vienna: Technical University Vienna.

    Google Scholar 

  • Sedlon, F.G. (2001), Regional disease vector ecology profile: South Central Asia. Defense Technical Information Center.

  • Spennemann, D.H.R. (1997). Distribution of rat species (Rattus spp.) on the atolls of the Marshall islands: past and present dispersal. Atoll Research Bulletin, 446, 1–18.

    Article  Google Scholar 

  • Sugunan, A.P., Vijayachari, P., Sharma, S. (1998). Risk factors in the transmission of leptospiral infection. The Indian Journal of Medical Research, 107, 218–23.

    Google Scholar 

  • Taylor, P.J., Arntzen, L., Hayter, M., Iles, M., Frean, J., Belmain, S. (2008). Understanding and managing sanitary risks due to rodent zoonoses in an African city: beyond the Boston model. Integrative Zoology, 3(1), 38–50.

    Article  Google Scholar 

  • Traweger, D., Travnitzky, R., Moser, C., Walzer, C., Bernatzky, G. (2006). Habitat preferences and distribution of the brown rat (Rattus norvegicus Berk.) in the city of Salzburg (Austria): implications for an urban rat management. Journal of Pest Science, 79(3), 113–125.

    Article  Google Scholar 

  • Walsh, M.G. (2014). Rat sightings in New York City are associated with neighborhood sociodemographics, housing characteristics, and proximity to open public space. PeerJ, e533, 2.

    Google Scholar 

  • Zhou, N., Hubacek, K., Roberts, M. (2015). Analysis of spatial patterns of urban growth across South Asia using DMSP-OLS Nighttime Lights data. Applied Geography, 63(Supplement C), 292–303.

    Article  Google Scholar 

Download references

Acknowledgments

Farrah Zaidi and Muhammad Adnan are thankful to the management of the Lady Reading Hospital, Peshawar, for providing the rat bite data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Zaidi, F., Fatima, S.H. et al. Spatial modeling of rat bites and prediction of rat infestation in Peshawar valley using binomial kriging with logistic regression. Environ Monit Assess 190, 245 (2018). https://doi.org/10.1007/s10661-018-6615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6615-5

Keywords

Navigation