Skip to main content
Log in

Dissolved organic matter characteristics along sabo dammed streams based on ultraviolet visible and fluorescence spectral properties

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Changes in dissolved organic matter (DOM) characteristics were investigated in two mountainous streams with closed-type sabo dams. Surface water was collected from four stations along the two mountainous streams and analyzed using ultraviolet-visible spectrophotometry and excitation-emission fluorescence matrix (EEM) methods. Optical properties of DOM indicated an increase in molecular weight and aromaticity at stations near the sabo dams. Average spectral ratio values were low before and after the dam (i.e., < 0.72) compared to other sections of the stream. Specific ultraviolet absorbance (SUVA254) increased in the vicinities of the dams. While chromophoric DOM characteristics from two sites were influenced by the dam, fluorescence components, however, did not show notable changes around dams. Instead, the three chromophoric components distinguished by EEM-parallel factor analysis, that is, humic-like (C1 and C2) and protein-like (C3) increase along the stream. Fulvic-like component (C1) had a high fluorescence intensity at all stations; all the three components were more abundant in the downstream section. Chromophoric DOM properties varied along the stream based on alterations in molecular size and aromaticity. Using multivariate analysis, the studied sites were grouped into three clusters related to sabo dams and other activities. We conclude that sabo dams modify DOM characteristics which influence the behavior of DOM transported along the stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aiken, G. R., Hsu-Kim, H., & Ryan, J. N. (2011). Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environmental Science & Technology. https://doi.org/10.1021/es103992s.

  • Bahar, M. M., Ohmori, H., & Yamamuro, M. (2008). Relationship between river water quality and land use in a small river basin running through the urbanizing area of Central Japan. Limnology, 9, 19–26. https://doi.org/10.1007/s10201-007-0227-z.

    Article  CAS  Google Scholar 

  • Bilby, R. E. (1981). Role of organic debris dams in regulating the export of dissolved and particulate matter from a forested watershed. Ecology. https://doi.org/10.2307/1937288.

  • Catalán, N., Ortega, S. H., Grontoft, H., Hilmarsson, G. T., Bertilsson, S., Wu, P., et al. (2016). Effects of beaver impoundments on dissolved organic matter quality and biodegradability in boreal riverine systems. Hydrobiologia. https://doi.org/10.1007/s10750-016-2766-y.

  • Chanson, H. (2004). Sabo check dams-mountain protective systems in Japan. International Journal of River Basin Management, 2, 301–307.

    Article  Google Scholar 

  • Chen, J., Gu, B., LeBoeuf, E. J., Pan, H., & Dai, S. (2002). Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere. https://doi.org/10.1016/S0045-6535(02)00041-3.

  • Coble, P. G. (2007). Marine optical biogeochemistry: the chemistry of ocean color. Chemical Reviews. https://doi.org/10.1021/cr050350+.

  • Cory, R. M., & Kaplan, L. A. (2012). Biological lability of stream water fluorescent dissolved organic matter. Limnology and Oceanography. https://doi.org/10.4319/lo.2012.57.5.1347.

  • Cory, R. M., & McKnight, D. M. (2005). Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology. https://doi.org/10.1021/es0506962.

  • Cory, R. M., Miller, M. P., McKnight, D. M., Guerard, J. J., & Miller, P. L. (2010). Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnology and Oceanography: Methods. https://doi.org/10.4319/lom.2010.8.67.

  • Cui, H., Shi, J., Qiu, L., Zhao, Y., Wei, Z., Wang, X., et al. (2016). Characterization of chromophoric dissolved organic matter and relationships among PARAFAC components and water quality parameters in Heilongjiang China. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-016-6230-3.

  • Flores, L., Díez, J. R., Larrañaga, A., Pascoal, C., & Elosegi, A. (2013). Effects of retention site on breakdown of organic matter in a mountain stream. Freshwater Biology. https://doi.org/10.1111/fwb.12125.

  • Friedl, G., & Wüest, A. (2002). Disrupting biogeochemical cycles—consequences of damming. Aquatic Sciences. https://doi.org/10.1007/s00027-002-8054-0.

  • Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., & Mopper, K. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography. https://doi.org/10.4319/lo.2008.53.3.0955.

  • Inamdar, S., Finger, N., Singh, S., Mitchell, M., Levia, D., Bais, H., et al. (2012). Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA. Biogeochemistry. https://doi.org/10.1007/s10533-011-9572-4.

  • Jaffé, R., McKnight, D., Maie, N., Cory, R., McDowell, W. H., & Campbell, J. L. (2008). Spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. Journal of Geophysical Research. https://doi.org/10.1029/2008jg000683.

  • Jaffé, R., Yamashita, Y., Maie, N., Cooper, T. W., Dittmar, T., Dodds, K. W., et al. (2012). Dissolved organic matter in headwater streams: compositional variability across climatic regions of North America. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2012.06.031.

  • Kaiser, K., Guggenberger, G., Haumaier, L., & Zech, W. (2001). Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany. Biogeochemistry. https://doi.org/10.1023/A:1010694032121.

  • Leech, D. M., Ensign, S. H., & Piehler, M. F. (2016). Spatiotemporal patterns in the export of dissolved organic carbon and chromophoric dissolved organic matter from a coastal, blackwater river. Aquatic Sciences. https://doi.org/10.1007/s00027-016-0474-3.

  • Leenher, J. A., & Croué, J. P. (2003).  Characterizing aquatic dissolved organic matter. ​ Environmental Science & Technology. https://doi.org/10.1021/es032333c.

  • Lennon, J. T., Hamilton, S. K., Muscarella, M. E., Grandy, A. S., Wickings, K., & Jones, S. E. (2013). A source of terrestrial organic carbon to investigate the browning of aquatic ecosystems. PLoS One. https://doi.org/10.1371/journal.pone.0075771.

  • Maeschner, B., & Kalbitz, K. (2002). Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma. https://doi.org/10.1016/S0016-7061(02)00362-2.

  • Marutani, T., Kikuchi, S., Yanai, S., & Kochi, K. (2008). The light and dark of sabo-dammed streams in steep land settings in Japan. In G. J. Brierley & K. A. Fryirs (Eds.), River futures: an integrative scientific approach to river repair (pp. 220–236). Washington DC: Island Press.

    Google Scholar 

  • McClain, M. E., Boyer, W. E., Dent, C. L., Gergel, E. S., Grimm, B. N., Groffman, M. P., et al. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems. https://doi.org/10.1007/s10021-003-0161-9.

  • McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46, 38–48.

    Article  CAS  Google Scholar 

  • Moran, A. M., Sheldon, W. M. J., & Zepp, R. G. (2000). Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnology and Oceanography. https://doi.org/10.4319/lo.2000.45.6.1254.

  • Mostofa, K. M. G., Honda, Y., & Sakugawa, H. (2005). Dynamics and optical nature of fluorescent dissolved organic matter in river waters in Hiroshima Prefecture, Japan. Geochemical Journal. https://doi.org/10.2343/geochemj.39.257.

  • Murphy, K. R., Stedmon, C. A., Graeber, D., & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC Analytical Methods. https://doi.org/10.1039/c3ay41160e.

  • Obernosterer, I., & Benner, R. (2004). Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnology and Oceanography, 49, 117–124.

    Article  CAS  Google Scholar 

  • Ohno, T., & Bro, R. (2006). Dissolved organic matter characterization using multiway spectral decomposition of fluorescence landscapes. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj2006.0005.

  • Praise, S., Watanabe, T., Watanabe, K., Ito, H., & Okubo, H. (2016). Impact of closed sabo dams on manganese concentration change in mountainous streams. International Journal of River Basin Management. https://doi.org/10.1080/15715124.2016.1209510.

  • Sazawa, K., Tachi, M., Wakimoto, T., Kawakami, T., Hata, N., Taguchi, S., & Kuramitz, H. (2011). The evaluation for alterations of DOM components from upstream to downstream flow of rivers in Toyama (Japan) using three-dimensional excitation-emission matrix fluorescence spectroscopy. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph8051655.

  • Sherrell, M. R., & Ross, M. J. (1999). Temporal variability of trace metals in New Jersey pinelands streams: relationships to discharge and pH. Geochimica et Cosmochimica Acta, 63. https://doi.org/10.1016/S0016-7037(99)00254-9.

  • Shi, J., Cui, H., Jia, L., Qiu, L., Zhao, Y., Wei, Z., et al. (2016). Bioavailability of riverine dissolved organic carbon and nitrogen in the Heilongjiang watershed of northeastern China. Environmental Monitoring and Assessment, 188(2), 113.

    Article  Google Scholar 

  • Spencer, R. G. M., Butler, K. D., & Aiken, G. R. (2012). Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2011jg001928.

  • Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods. https://doi.org/10.4319/lom.2008.6.572b.

  • Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry. https://doi.org/10.1016/s0304-4203(03)00072-0.

  • Stepanauskas, R., Laudon, H., & Jørgensen, N. O. (2000). High DON bioavailability in boreal streams during a spring flood. Limnology and Oceanography, 45(6), 1298–1307.

    Article  CAS  Google Scholar 

  • Suzuki, T., Nagao, S., Horiuchi, M., Maie, N., Yamamoto, M., & Nakamura, K. (2014). Characteristics and behavior of dissolved organic matter in the Kumaki River, Noto Peninsula, Japan. Limnology. https://doi.org/10.1007/s10201-014-0441-4.

  • Tadahiko, S., & Yamaguchi, Y. (2009). Dams and storage reservoirs. In Y. Takahashi (Ed.), Water storage, transport, and distribution. Chapter 2. Oxford: Encyclopedia of life support systems.

    Google Scholar 

  • Tanju, K., Ilke, E., & Schlautman, M. A. (2003). Selecting filter membranes for measuring DOC and UV254. Journal American Water Works Association, 95, 86–100.

    Article  Google Scholar 

  • Uyguner, C. S., & Bekbolet, M. (2005). Implementation of spectroscopic parameters for practical monitoring of natural organic matter. Desalination. https://doi.org/10.1016/j.desal.2004.10.027.

  • Vidon, P., Wagner, L. E., & Soyeux, E. (2008). Changes in the character of DOC in streams during storms in two Midwestern watersheds with contrasting land uses. Biogeochemistry. https://doi.org/10.1007/s10533-008-9207-6.

  • Weishaar, L. J., Aiken, R. G., Bergamaschi, A. B., Fram, S. M., Fujii, R., & Moppers, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology. https://doi.org/10.1021/es030360x.

  • Yamashita, Y., Jaffé, R., Maie, N., & Tanoue, E. (2008). Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnology and Oceanography, 53(5), 1900–1908. https://doi.org/10.4319/lo.2008.53.5.1900

  • Yamashita, Y., Scinto, L. J., Maie, N., & Jaffé, R. (2010). Dissolved Organic Matter Characteristics Across a Subtropical Wetland’s Landscape: Application of Optical Properties in the Assessment of Environmental Dynamics. Ecosystems, 13(7), 1006–1019. https://doi.org/10.1007/s10021-010-9370-1.

    Article  CAS  Google Scholar 

  • Yamashita, Y., Kloeppel, B. D., Knoepp, J., Zausen, G. L., & Jaffé, R. (2011). Effects of watershed history on dissolved organic matter characteristics in headwater streams. Ecosystems. https://doi.org/10.1007/s10021-011-9469-z.

  • Yamashita, Y., Boyer, J. N., & Jaffé, R. (2013). Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy. Continental Shelf Research. https://doi.org/10.1016/j.csr.2013.06.010.

Download references

Acknowledgements

We thank all the members of the research team for their assistance with field sampling and laboratory analysis. We are grateful for the help received from Julien Guigue during PARAFAC analysis. This study was supported by Yamagata University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Praise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praise, S., Ito, H., An, Y. et al. Dissolved organic matter characteristics along sabo dammed streams based on ultraviolet visible and fluorescence spectral properties. Environ Monit Assess 190, 146 (2018). https://doi.org/10.1007/s10661-018-6518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6518-5

Keywords

Navigation