Skip to main content
Log in

Benthic macroinvertebrate community structure in Napoleon Gulf, Lake Victoria: effects of cage aquaculture in eutrophic lake

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An investigation was conducted on the macro-benthic fauna of the Napoleon Gulf in the northern part of Lake Victoria from March 2011 to December 2016 at the cage fish farm. The aim was to examine the likely impact of cage aquaculture on macro-benthic invertebrates. Cage aquaculture is now a common practice on Lake Victoria yet little is known about its long-term effect on macro-benthic faunal assemblages. Temporal variation indicated a general decline in annual faunal density at the farm area with corresponding stability at upstream (control) and downstream sites. Arthropods remained numerically dominant at the control and downstream sites. The percentage abundance of EPT (Ephemeroptera, Plecoptera, and Trichoptera) and Malacostraca was highest at the upstream and lowest at the farm area. The farm area which initially was dominated by molluscs became dominated by arthropods after 3 years. The decrease in density of molluscs at the farm area was attributed to the general decrease in density of two species: Bellamya unicolor (Gastropoda) and Corbicula africana (Bivalvia). These two species were initially abundant but showed decline within the farm area with corresponding stability at the upstream and downstream areas. Oligochaete annelids were more abundant within the farm area than at the upstream and downstream sites. These findings suggested that molluscs offered better prediction of the impact of cages on the environment than arthropods. Besides that, in a community dominated by pollution-tolerant organisms, the impact of aquaculture may not be immediate especially when organic loading from aquaculture is moderate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alpaslan, A., & Pulatsü, S. (2008). The effect of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) cage culture on sediment quality in Kesikköprü Reservoir, Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 8, 65–70.

    Google Scholar 

  • Blow, P., & Leonard, S. (2007). A review of cage aquaculture: sub-Saharan Africa. In M. Halwart, D. Soto and J. R. Arthur (Eds.), Cage aquaculture Regional reviews and global overview (pp. 188–207). FAO Fisheries Technical Paper. No. 498. Rome, FAO. 241 pp.

  • Braaten, R. (2007). Cage aquaculture and environmental impacts. In A. Bergheim (Ed.), Aquacultural engineering and environment (Vol. 661, pp. 49–91). Research Signpost: Kerala.

    Google Scholar 

  • Camargo, J. A. (1992). Structural and trophic alterations in macrobenthic communities downstream from a fish farm outlet. Hydrobiologia, 242(1), 41–49. https://doi.org/10.1007/BF00017642

    Article  Google Scholar 

  • Connell, J. H. (1978). Diversity of tropical rain forests and coral reefs. Science, 199(4335), 1302–1310. https://doi.org/10.1126/science.199.4335.1302

    Article  CAS  Google Scholar 

  • Cornel, G. E., & Whoriskey, F. G. (1993). The effects of rainbow trout (Oncorhynchus mykiss) cage culture on the water quality, zooplankton, benthos and sediments of Lac du Passage, Quebec. Aquaculture, 109(2), 101–117. https://doi.org/10.1016/0044-8486(93)90208-G

    Article  CAS  Google Scholar 

  • Diaz, R. J., & Rosenberg, R. (1995). Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology—Annual Review, 33, 245–303.

    Google Scholar 

  • Dobrowolski, Z. (1987). The effect of cage aquaculture of rainbow trout on the distribution and stability of macrobenthos in eutrophic Lake Letowskie. Ekologia Polska, 35, 611–638.

    Google Scholar 

  • Fernandes, T. F., Eleftheriou, A., Ackefors, H., Eleftheriou, H., Ervik, A., Sanchez-Mata, A., Scanlon, T., White, P., Cochrane, S., Pearson, T. H., & Read, P. A. (2001). The scientific principles underlying the monitoring of the environmental impacts of aquaculture. Journal of Applied Ichthyology, 17(4), 181–193. https://doi.org/10.1046/j.1439-0426.2001.00315.x

    Article  Google Scholar 

  • Gowen, R. J., & Bradbury, N. B. (1987). The ecological impact of salmonid farming in coastal waters—a review. Oceanography and Marine Biology, 25, 563–575.

    Google Scholar 

  • Henderson, R. J., Forrest, D. A. M., Black, K. D., & Park, M. T. (1997). The lipid composition of sea loch sediments underlying salmon cages. Aquaculture, 158(1-2), 69–83. https://doi.org/10.1016/S0044-8486(97)00207-X

    Article  CAS  Google Scholar 

  • Hilsenhoff, W. L. (1977). Use of arthropods to evaluate water quality of streams. Technical Bulletin No. 100, Department of Natural Resources, Madison, Wisconsin.

  • Hilsenhoff, W. L. (1988). Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society, 7(1), 65–68. https://doi.org/10.2307/1467832

    Article  Google Scholar 

  • Holmer, M., & Kristensen, E. (1992). Impact of marine fish cage farming on metabolism and sulfatereduction of underlying sediments. Marine Ecology Progress Series, 80, 191–201. https://doi.org/10.3354/meps080191

    Article  CAS  Google Scholar 

  • Holmer, M., Wildfish, D., & Hargrave, B. (2005). Organic enrichment from marine finfish aquaculture and effects on sediment biogeochemical processes. In B. T. Hargrave (Ed.), Environmental Effects of Marine Finfish Aquaculture (pp. 181–206). Berlin: Springer.

    Chapter  Google Scholar 

  • Hussin, W. M. R. W. (2014). Marine fish farming in Bidong Island, Malaysia and its implications on benthic community structure and functional diversity. AACL Bioflux, 7(6), 431–440.

    Google Scholar 

  • Johnsen, R. I., Grahl-Nielsen, O., & Lunestad, B. T. (1993). Environmental distribution of organic waste from a marine fish farm. Aquaculture, 118(3-4), 229–244. https://doi.org/10.1016/0044-8486(93)90459-C

    Article  Google Scholar 

  • Karakassis, I., Tsapakis, M., & Hatziyanni, E. (1998). Seasonal variability in sediment profiles beneath fish farm cages in the Mediterranean. Marine Ecology Progress Series, 162, 243–252. https://doi.org/10.3354/meps162243

    Article  Google Scholar 

  • Karakassis, I., Tsapakis, M., Hatziyanni, E., Papadopoulou, K. N., & Plaiti, W. (2000). Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES Journal of Marine Science, 57(5), 1462–1471. https://doi.org/10.1006/jmsc.2000.0925

    Article  Google Scholar 

  • Kashindye, B. B., Nsinda, P., Kayanda, R., Ngupula, G. W., Mashafi, C. A., & Ezekiel, C. N. (2015). Environmental impacts of cage culture in Lake Victoria: the case of Shirati Bay-Sota, Tanzania. SpringerPlus, 4(475), 1–15. https://doi.org/10.1186/s40064-015-1241-y

    Google Scholar 

  • Kifuko, R. (2015). The state of cage fish farming in Uganda: actors, enabling environment, challenges and way forward. International Journal of Education and Research, 3(3), 483–488.

    Google Scholar 

  • Mandahl-Barth, G. (1954). The freshwater mollusks of Uganda and adjacent territories. Sciences Zoologiques 32: 206 pp.

  • Mandaville, S. M. (2002). Benthic macroinvertebrates in freshwaters-taxa tolerance values, metrics, and protocols.

  • Margalef, R. (1968). Perspective in ecological theory (Vol. 112). Chicago: Uni. of Chicago Press.

    Google Scholar 

  • Mazzola, A., Mirto, S., La Rosa, T., Fabiano, M., & Danovaro, R. (2000). Fish-farming effects on benthic community structure in coastal sediments: analysis of meiofaunal recovery. ICES Journal of Marine Science, 57(5), 1454–1461. https://doi.org/10.1006/jmsc.2000.0904

    Article  Google Scholar 

  • Merritt, R. W., & Cummins, K. W. (1997). An introduction to the aquatic insects of North America (3rd ed.). Dubuque: Kendall/Hunt Publishing Co. 720 Pages.

    Google Scholar 

  • Miserendino, M. L., & Pizzolon, L. A. (2000). Macroinvertebrates of a fluvial system in Patagonia: altitudinal zonation and functional structure. Archiv Fur Hydrobiologie, 150(1), 55–83. https://doi.org/10.1127/archiv-hydrobiol/150/2000/55

    Article  Google Scholar 

  • Mwebaza-Ndawula, L., Kiggundu, V., Magezi, G., Naluwayiro, J., & Pabire-Gandhi, W. (2013). Effects of cage fish culture on water quality and selected biological communities in northern Lake Victoria, Uganda. Uganda Journal of Agricultural Sciences, 14(2), 61–75.

    Google Scholar 

  • Nabirye, H., Mwebaza-Ndawula, L., Bugenyi, F. W. B., & Jones, F. (2016). The evaluation of cage fish farming effects on water quality using selected benthic macro-invertebrate community parameters in the Napoleon gulf, northern Lake Victoria. International Journal of Fisheries and Aquatic Sciences, 4(1), 42–50.

    Google Scholar 

  • Pearson, T. H., & Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: An Annual Review, 16, 229–311.

    Google Scholar 

  • Pennak, R. W. (1953). Fresh-water invertebrates of the United States. New York: The Ronald Press Company.

    Google Scholar 

  • Porrello, S., Tomassetti, P., Manzueto, L., Finoia, M. G., Persia, E., Mercatali, I., & Stipa, P. (2005). The influence of marine cages on the sediment chemistry in the Western Mediterranean Sea. Aquaculture, 249(1-4), 145–158. https://doi.org/10.1016/j.aquaculture.2005.02.042

    Article  CAS  Google Scholar 

  • Radhiy, G., Abbas, M., Abu-Elheni, J., & Al-Hasani, A. (2016). Distribution and composition of benthic-invertebrate community at fish floating cages in Tigris River before Al-Kut Barrier/Asit provice, Iraq. Iragi Journal of Aquaculture, 13(2), 179–189.

    Google Scholar 

  • Reid, G. K., Liutkus, M., Robinson, S. M. C., Chopin, T. R., Blair, T., Lander, T., Mullen, J., Page, F., & Moccia, R. D. (2009). A review of the biophysical properties of salmonid faeces: implications for aquaculture waste dispersal models and integrated multi-trophic aquaculture. Aquaculture Research, 40(3), 257–273. https://doi.org/10.1111/j.1365-2109.2008.02065.x

    Article  Google Scholar 

  • Rooney, R., & Podemski, C. L. (2009). Effects of an experimental rainbow trout (Oncorhynchus mykiss) farm on invertebrate community composition. Canadian Journal of Fisheries and Aquatic Sciences, 66(11), 1949–1964. https://doi.org/10.1139/F09-130

    Article  CAS  Google Scholar 

  • Rutaisire, J., Charo-Karisa, H., Shoko, A. P., & Nyandat, B. (2009). Aquaculture for increased fish production in East Africa. African Journal of Tropical Hydrobiology and Fisheries, 12, 74–77.

    Google Scholar 

  • Sanz-Lázaro, C., & Marín, A. (2011). Diversity patterns of benthic macrofauna caused by marine fish farming. Diversity, 3(2), 176–199. https://doi.org/10.3390/d3020176

    Article  Google Scholar 

  • Schmidlin, S., & Baur, B. (2007). Distribution and substrate preference of the invasive clam Corbicula fluminea in the river Rhine in the region of Basel (Switzerland, Germany, France). Aquatic Sciences, 69(1), 153–161. https://doi.org/10.1007/s00027-006-0865-y

    Article  CAS  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press 144pp.

    Google Scholar 

  • Terlizzi, A., De Falco, G., Felline, S., Fiorentino, D., Gambi, M. C., & Cancemi, G. (2010). Effects of marine cage aquaculture on macrofauna assemblages associated with Posidonia oceanica meadows. Italian Journal of Zoology, 77(3), 362–371. https://doi.org/10.1080/11250000903464075

    Article  CAS  Google Scholar 

  • Villnas, A., Perus, J., & Bonsdorff, E. (2011). Structural and functional shifts in zoobenthos induced by organic enrichment—implications for community recovery potential. Journal of Sea Research, 65(1), 8–18. https://doi.org/10.1016/j.seares.2010.06.004

    Article  Google Scholar 

  • Vita, R., & Marin, A. (2007). Environmental impact of capture-based bluefin tuna aquaculture on benthiccommunities in the western Mediterranean. Aquaculture Research, 38(4), 331–339. https://doi.org/10.1111/j.1365-2109.2007.01649.x

    Article  Google Scholar 

  • Wilhm, J. L., & Dorris, T. C. (1968). Biological parameters of water quality criteria. Bioscience, 18(6), 477–481. https://doi.org/10.2307/1294272

    Article  Google Scholar 

  • Wu, R. S. S. (1995). The environmental impact of marine fish culture: towards a sustainable future. Marine Pollution Bulletin, 31(4), 159–166. https://doi.org/10.1016/0025-326X(95)00100-2

    Article  CAS  Google Scholar 

  • Yan, N. D. (2005). Research needs for the management of water quality issues, particularly phosphorus and oxygen concentrations, related to salmonid cage aquaculture in Canadian freshwaters. Environmental Reviews, 13(1), 1–19. https://doi.org/10.1139/a05-001

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the close collaboration between the fish farm management and the National Fisheries Resources Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Egessa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egessa, R., Pabire, G.W. & Ocaya, H. Benthic macroinvertebrate community structure in Napoleon Gulf, Lake Victoria: effects of cage aquaculture in eutrophic lake. Environ Monit Assess 190, 112 (2018). https://doi.org/10.1007/s10661-018-6498-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6498-5

Keywords

Navigation