Skip to main content

Advertisement

Log in

Effects of open dumping of MSW on metal contamination of soil, plants, and earthworms in Ranchi, Jharkhand, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Influence of open dumping of municipal solid wastes (MSW) on metal contamination of soil, plants, and earthworms in Ranchi, Jharkhand, India, was studied over 6-month period. Dumpsite in the study area exists in two sections, old section where waste dumping has stopped and new section where wastes are currently disposed. Soil around dumpsite had high concentration of Co, Cr, Cu, Pb, and Zn than that at control site. Geoaccumulation index indicated uncontaminated to moderate level of soil contamination at old dumpsite and soil at new dumpsite was found to be uncontaminated. Parthenium hysterophorus, Lantana camara, and Calotropis procera were the main plants found in patchy distribution around dumpsite. Plants exhibited almost similar levels of metal concentration in roots and shoots. P. hysterophorus and L. camara showed high bioaccumulation capacity and low translocation capacity. C. procera showed moderate bioaccumulation capacity and high translocation capacity as the concentration of metals was higher in the shoot. P. hysterophorus and L. camara due to higher bioaccumulation capacity and lower translocation capacity appear to be suitable for phytostabilization of metal-contaminated soil. Earthworms present at the dumpsite showed high concentration of Cr, Cu, Pb, and Zn with bioconcentration factor > 1. Results highlights that soil contamination due to metals is occurring at the dumpsite which is also leading to transfer of metals to plants and earthworms which can pose serious risk to environment and human health. The plants identified can be used for decontamination of metals from the dumpsite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamcová, D., Radziemska, M., Ridošková, A., Bartoň, S., Pelcová, P., Elbl, J., Kynický, J., Brtnický, M., & Vaverková, M. D. (2017). Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere, 185, 1011–1018. https://doi.org/10.1016/j.chemosphere.2017.07.060

    Article  Google Scholar 

  • Ahmad, A., & Al-Othman, A. A. S. (2014). Remediation rates and translocation of heavy metals from contaminated soil through Parthenium hysterophorus. Chemistry and Ecology, 30(4), 317–327. https://doi.org/10.1080/02757540.2013.871269

    Article  CAS  Google Scholar 

  • Amusan, A. A., Ige, D. V., & Olawale, R. (2005). Characteristics of soils and crops uptake of metals in municipal waste dumps sites in Nigeria. Journal of Human Ecology, 17(3), 167–171. https://doi.org/10.1080/09709274.2005.11905775

    Article  Google Scholar 

  • Anikwe, M. A. N., & Nwobodo, K. C. A. (2002). Long term effect of municipal waste disposal on soil properties and productivity of sites used for urban agriculture in Abakaliki, Nigeria. Bioresource Technology, 83(3), 241–250. https://doi.org/10.1016/S0960-8524(01)00154-7

    Article  CAS  Google Scholar 

  • Arunbabu, V., Indu, K. S., & Ramasamy, E. V. (2017). Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate. Waste Management, 68, 329–336. https://doi.org/10.1016/j.wasman.2017.07.012

    Article  CAS  Google Scholar 

  • Bahaa-Eldin, E. A. R., Yusoff, I., Rahim, S. A., Zuhairi, W. Y. W., & Ghani, M. R. A. (2008). Heavy metal contamination of soil beneath a waste disposal site at Dengkil, Selangor, Malaysia. Soil and Sediment Contamination: An International Journal, 17, 449–466.

    Article  CAS  Google Scholar 

  • Bhagure, G. R., & Mirgane, S. R. (2011). Heavy metal concentrations in groundwaters and soils of Thane Region of Maharashtra, India. Environmental Monitoring and Assessment, 173(1-4), 643–652. https://doi.org/10.1007/s10661-010-1412-9

    Article  CAS  Google Scholar 

  • Buteh, D. S., Chindo, I. Y., Ekanem, E. O., & Williams, E. M. (2013). Impact assessment of contamination pattern of solid waste dumpsite soil: a comparative study of Bauchi metropolis. World Journal of Analytical Chemistry, 1, 59–62.

    Google Scholar 

  • Census of India (2011). Census of India 2011, Jharkhand, series 21, part XII-B, District Census Handbook, Ranchi. Village and town wise primary census abstract (PCA). Directorate of Census Operations Jharkhand. http://www.censusindia.gov.in/2011census/dchb/2019_PART_B_DCHB_RANCHI.pdf.

  • Central Ground Water Board (CGWB) (2009). Groundwater information booklet. Available on http://cgwb.gov.in/District_Profile/ Jharkhand/RANCHI.pdf.

  • Chakraborty, S., & Kumar, R. N. (2016). Assessment of groundwater quality at a MSW landfill site using standard and AHP based water quality index: a case study from Ranchi, Jharkhand, India. Environmental Monitoring and Assessment, 188(6), 335. https://doi.org/10.1007/s10661-016-5336-x

    Article  Google Scholar 

  • Dandan, W., Huixin, L., Feng, H., & Xia, W. (2010). Role of earthworm-straw interactions on phytoremediation of Cu contaminated soil by ryegrass. Acta Ecologica Sinica, 27, 1292–1298.

    Article  Google Scholar 

  • Guerrero, L. A., Maas, G., & Hogland, W. (2013). Solid waste management challenges for cities in developing countries. Waste Management, 33(1), 220–232. https://doi.org/10.1016/j.wasman.2012.09.008

    Article  Google Scholar 

  • Hanway, J. J., & Heidel, H. (1952). Soil analysis methods as used in Iowa state. College soil testing laboratory. Iowa State College Bulletin, 57, 1–131.

    Google Scholar 

  • India Meteorological Department (IMD). Available at http://www.imd.gov.in/section/climate/extreme/ranchi2.htm.

  • Isidori, M., Lavorgna, M., Nardelli, A., & Parrella, A. (2003). Toxicity identification evaluation of leachates from municipal solid waste landfills: a multispecies approach. Chemosphere, 52(1), 85–94. https://doi.org/10.1016/S0045-6535(03)00298-4

    Article  CAS  Google Scholar 

  • Jha, A. K., Sharma, C., Singh, N., Ramesh, R., Purvaja, R., & Gupta, P. K. (2008). Greenhouse gas emissions from municipal solid waste management in Indian mega-cities: a case study of Chennai landfill sites. Chemosphere, 71(4), 750–758. https://doi.org/10.1016/j.chemosphere.2007.10.024

    Article  CAS  Google Scholar 

  • Joshi, R. & Ahmed, S. (2016). Status and challenges of municipal solid waste management in India: A review. Cogent Environmental Science, 2, 1139434. https://doi.org/10.1080/23311843.2016.1139434.

  • Kamaruddin, M. A., Yusoff, M. S., Rui, L. M., Isa, A. M., Zawawi, M. H., & Alrozi, R. (2017). An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environmental Science and Pollution Research, 24(35), 26988–27020. https://doi.org/10.1007/s11356-017-0303-9

    Article  CAS  Google Scholar 

  • Kanmani, S., & Gandhimathi, R. (2013). Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Applied Water Science, 3(1), 193–205. https://doi.org/10.1007/s13201-012-0072-z

    Article  CAS  Google Scholar 

  • Khapre, A., Kumar, S., & Rajasekaran, C. (2017). Phytocapping: an alternate cover option for municipal solid waste landfills. Environmental Technology, 1–8. https://doi.org/10.1080/09593330.2017.1414314

  • Kloke, A., Sauerbeck, D. R., & Vetter, H. (1984). The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In J. O. Nriagu (Ed.), Changing Metal Cycles and Human Health (p. 113). Berlin: Dahlem, Konferenzen, Springer-Verlag. https://doi.org/10.1007/978-3-642-69314-4_7

    Chapter  Google Scholar 

  • Krishna, R., Iqbal, J., Gorai, A. K., Pathak, G., Tuluri, F. & Tchounwou, P. B. (2015). Groundwater vulnerability to pollution mapping of Ranchi district using GIS. Applied Water Science, 5, 345–358.

  • Kumar, V. L., & Roy, S. (2009). Protective effect of latex of Calotropis procera in Freund’s complete adjuvant induced monoarthritis. Phytotherapy Research, 23(1), 1–5. https://doi.org/10.1002/ptr.2270

    Article  CAS  Google Scholar 

  • Lee, B. T., & Kim, K. W. (2008). Lysosomal membrane response of earthworm, Eisenia fetida, to arsenic contamination in soils. Environmental Toxicology, 24, 369–376.

    Article  CAS  Google Scholar 

  • Lemtiri, A., Liénard, A., Alabi, T., Brostaux, Y., Cluzeau, D., Francis, F., & Colinet, G. (2016). Earthworms Eisenia fetida affect the uptake of heavy metals by plants Vicia faba and Zea mays in metal-contaminated soils. Applied Soil Ecology, 104, 67–78. https://doi.org/10.1016/j.apsoil.2015.11.021

    Article  Google Scholar 

  • Long, Y. Y., Sheng, D. S., Wang, H. T., Lu, W. J., & Zhao, Y. (2011). Heavy metal source analysis in municipal solid waste (MSW): case study on Cu and Zn. Journal of Hazardous Materials, 186(2-3), 1082–1087. https://doi.org/10.1016/j.jhazmat.2010.11.106

    Article  CAS  Google Scholar 

  • Maiti, S. K., & Jaiswal, S. (2008). Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bangal, India. Environmental Monitoring and Assessment, 136(1-3), 355–370. https://doi.org/10.1007/s10661-007-9691-5

    Article  CAS  Google Scholar 

  • Malik, R. N., & Husain, S. (2006). Classification and ordination of vegetation communities of the Lohiber reserve forest and its surrounding areas, Rawalpindi, Pakistan. Pakistan Journal of Botany, 38, 543–558.

    Google Scholar 

  • Mellem, J. J., Baijnath, H., & Odhav, B. (2009). Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. Journal of Environmental Science and Health, Part A, 44(6), 568–575. https://doi.org/10.1080/10934520902784583

    Article  CAS  Google Scholar 

  • Morgan, J. E., & Morgan, A. J. (1999). The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxicological testing. Applied Soil Ecology, 13(1), 9–20. https://doi.org/10.1016/S0929-1393(99)00012-8

    Article  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geo Journal, 2, 108–118.

    Google Scholar 

  • Nagendran, R., Selvam, A., Joseph, K., & Chiemchaisri, C. (2006). Phytoremediation and rehabilitation of municipal solid waste landfills and dumpsites: a brief review. Waste Management, 26(12), 1357–1369. https://doi.org/10.1016/j.wasman.2006.05.003

    Article  CAS  Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. (1954). Estimation of available phosphorous in soils by extraction with sodium bicarbonate. Circular (vol. 939, pp. 19). Washington, DC: US Department of Agriculture.

  • Oviasogie, P. O., Omoruyi, E., Okoro, D., & Ndiokwere, C. L. (2009). Evaluation of physicochemical properties and distribution of Pb, Cd, Cr and Ni in soils and growing plants around refuse dumpsites in Akure, Nigeria. African Journal of Biotechnology, 8, 2757–2762.

    CAS  Google Scholar 

  • Oyedapo, O. O., Sab, F. C., & Olagunju, J. A. (1999). Bioactivity of fresh leaves of Lantana camara. Biomedical Letters, 59, 179–183.

    Google Scholar 

  • Paladino, O., & Massabo, M. (2017). Health risk assessment as an approach to manage an old landfill and to propose integrated solid waste treatment: a case study in Italy. Waste Management, 68, 344–354. https://doi.org/10.1016/j.wasman.2017.07.021

    Article  CAS  Google Scholar 

  • Reinecke, A. J., & Reinecke, S. A. (2003). The influence of exposure history to lead on the lysosomal response in Eisenia fetida (Oligochaeta). Ecotoxicology and Environmental Safety, 54, 30–37.

    Article  Google Scholar 

  • Ruiz, E., Rodriguez, L., & Alonso-Azcarate, J. (2009). Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants. Chemosphere, 75(8), 1035–1041. https://doi.org/10.1016/j.chemosphere.2009.01.042

    Article  CAS  Google Scholar 

  • Salmanighabeshi, S., Palomo-Marín, M. R., Bernalte, E., Rueda-Holgado, F., Miró-Rodríguez, C., Fadic-Ruiz, X., Vidal-Cortez, V., Cereceda-Balic, F., & Pinilla-Gil, E. (2015). Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of Puchuncaví-Ventanas, central Chile. Science of the Total Environment, 527-528, 335–343. https://doi.org/10.1016/j.scitotenv.2015.05.010

    Article  CAS  Google Scholar 

  • Sharma, V., Sharma, R., & Satyanarayan, S. (2011). Biokinetic modeling of heavy metals in earthworms. Toxicological and Environmental Chemistry, 93(3), 474–486. https://doi.org/10.1080/02772248.2010.545210

    Article  CAS  Google Scholar 

  • Shu, S., Zhu, W., Wang, S., Ng, C. W. W., Chen, Y., & Chiu, A. C. F. (2018). Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: centrifuge and numerical modeling approach. Science of the Total Environment, 612, 1123–1131. https://doi.org/10.1016/j.scitotenv.2017.08.185

    Article  CAS  Google Scholar 

  • Singh, S., Raju, N. J., & Ramakrishna, C. (2018). Assessment of the effect of landfill leachate irrigation of different doses on wheat plant growth and harvest index: a laboratory simulation study. Environmental Nanotechnology, Monitoring & Management, 8, 150–156.

    Article  Google Scholar 

  • Sinha, S., & Gupta, A. K. (2005). Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: Effect on antioxidant. Chemosphere, 61(8), 1204–1214. https://doi.org/10.1016/j.chemosphere.2005.02.063

    Article  CAS  Google Scholar 

  • Stewart, E. A., Grimshaw, M. H., Parkinson, J. A., & Quarmby, C. (1974). Chemical analysis of ecological materials (p. 165). Osney Mead: Blackwell Scientific Publications.

    Google Scholar 

  • Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for estimation of available nitrogen in soils. Current Science, 25, 259–260.

    CAS  Google Scholar 

  • Svendsen, C., & Weeks, J. M. (1997). Relevance and applicability of a simple earthworm biomarker of copper exposure: I. links to ecological effects in a laboratory study with Eisenia andrei. Ecotoxicology and Environmental Safety, 36(1), 72–79. https://doi.org/10.1006/eesa.1996.1491

    Article  CAS  Google Scholar 

  • Thomas, D. J. L., Tyrrel, S. F., Smith, R., & Farrow, S. (2009). Bioassay for the evaluation of landfill leachate toxicity. Journal of Toxicology and Environmental Health, Part B, 12(1), 83–105. https://doi.org/10.1080/10937400802545292

    Article  Google Scholar 

  • Udom, B. E., Mbagwu, J. S. C., Adesodun, J. K., & Agbim, N. N. (2003). Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long term disposal of sewage sludge. Environment International, 30, 467–470.

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). Estimation of organic carbon by the chromic acid titration method. Soil Science, 47, 29–38.

    Article  Google Scholar 

  • Wang, K., Qiao, Y., Zhang, H., Yue, S., Li, H., Ji, X., & Liu, L. (2018). Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China. Ecotoxicology and Environmental Safety, 148, 876–883. https://doi.org/10.1016/j.ecoenv.2017.11.058

    Article  CAS  Google Scholar 

  • Wislocka, M., Krawczyk, J., Klink, A., & Morrison, L. (2006). Bioaccumulation of heavy metals by selected plant species from uranium mining dumps in the Sudety Mts., Poland. Polish Journal of Environmental Studies, 15, 811–818.

    CAS  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 166, 456–464.

    Article  Google Scholar 

  • Zhang, H., Pin-Jing, H., & Li-Ming, S. (2008). Implication of heavy metals distribution for a municipal solid waste management system—a case study in Shanghai. Science of the Total Environment, 402(2-3), 257–267. https://doi.org/10.1016/j.scitotenv.2008.04.047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the University Grants Commission, New Delhi, India (42-426/2013 (SR), 22/03/2013) for the financial assistance provided to carry out this research work. Second author thanks the Institute Fellowship scheme of Birla Institute of Technology, Mesra, Ranchi, India in support of the doctoral work. Authors also thank Ms. Anuradha Goswami and Mr. Shubhrasekhar Chakraborty for the help rendered during the field trips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Naresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Verma, M. & Kumar, R.N. Effects of open dumping of MSW on metal contamination of soil, plants, and earthworms in Ranchi, Jharkhand, India. Environ Monit Assess 190, 139 (2018). https://doi.org/10.1007/s10661-018-6492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6492-y

Keywords

Navigation