Skip to main content
Log in

Use of oil shale ash in road construction: results of follow-up environmental monitoring

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Oil shale ash (OSA) was used for road construction in a pristine swamp area in East-Estonia during 2013–2014. OSA was used as a binder both in mass stabilization of soft peat soil and in the upper layer. Use of OSA in civil engineering always raises questions about the environmental safety of such activities. Post-construction environmental monitoring of the pilot section was carried out in 2014 and 2015. The monitoring program involved surface water and soil sampling campaigns. Samples were analyzed for selected constituents and parameters of environmental concern. The paper gives data for assessing the environmental impact and evaluation of potential risks associated with construction of roads using OSA. Leaching of hazardous compounds from the pilot section to surrounding aqueous environment was not observed during the monitoring program. Still, the road construction affected the concentration of sulfates in surrounding surface water. Also, the water-soluble content of barium in surface water correlated significantly with the concentrations of chloride and sulfate ion and electric conductivity of the surface water. Therefore, it is recommended to monitor the electric conductivity, concentrations of sulfates, chlorides, and barium in nearby surface water when OSA is used in road construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adamson, J., Irha, N., Adamson, K., Steinnes, E., & Kirso, U. (2010). Effect of oil shale ash application on leaching behavior of arable soils: an experimental study. Oil Shale, 27(3), 250–257. https://doi.org/10.3176/oil.2010.3.06.

    Article  CAS  Google Scholar 

  • CEN/CENELEC. (2005). EN ISO/IEC 17025 General requirements for the competence of testing and calibration laboratories. CEN/CENELEC, Brussels.

  • Cetin, B., Aydilek, A. H., & Li, L. (2012). Experimental and numerical analysis of metal leaching from fly ash-amended highway bases. Waste Management, 32(5), 965–978. https://doi.org/10.1016/j.wasman.2011.12.012.

    Article  CAS  Google Scholar 

  • Ding, A., Fu, J., Sheng, G., Liu, P., & Carpenter, P. J. (2003). Effects of oil shale waste disposal on soil and water quality: hydrogeochemical aspects. Chemical Speciation and Bioavailability, 14, 79–86.

    Article  CAS  Google Scholar 

  • Eesti Energia AS. (2016). Project: LIFE+ 09/ENV/000227 OSAMAT. Final Technical Report. Resource document. Eesti Energia AS. www.osamat.ee/en/documents/aasta-2011-dokumendid/68-osamat-final-report151116.html. Accessed 12 Dec 2017.

  • Estonian Environmental Research Centre. (2013). Ohtlike ainete seire ja uuringud (2012–2013) Lõpparuanne. (in Estonian) Resource document. Eesti Keskkonnauuringute Keskus. seire.keskkonnainfo.ee/attachments/article/3133/ohtlike%20ainete%20seire%20ja%20uuringud%202012-%202013%20aruanne.pdf. Accessed 12 Dec 2017.

  • Estonian Ministry of Environment. (2010a). Regulation No 38 (adopted in 11.08.2010), Ohtlike ainete sisalduse piirväärtused pinnases (Concentration limits of hazardous substances in soil). Riigi Teataja I 2010, 57, 373. (in Estonian) Resource document. www.riigiteataja.ee/akt/13348997. Accessed 12 Dec 2017.

  • Estonian Ministry of Environment. (2010b). Regulation No 44 (adopted in 28.07.2009), Pinnaveekogumite moodustamise kord ja nende pinnaveekogumite nimestik, mille seisundiklass tuleb määrata, pinnaveekogumite seisundiklassid ja seisundiklassidele vastavad kvaliteedinäitajate väärtused ning seisundiklasside määramise kord (The procedure for the formation of surface water bodies and the list of these surface water bodies, which class status shall be determined, the status of surface water bodies and the quality indicators for the status of the corresponding water bodies and the procedure for determining the status). Riigi Teataja I, 25.11.2010, 15. (in Estonian) Resource document. www.riigiteataja.ee/akt/13210253?leiaKehtiv. Accessed 12 Dec 2017.

  • Estonian Ministry of Environment. (2010c). Regulation No 39 (adopted in 11.08.2010), Ohtlike ainete põhjavee kvaliteedi piirväärtused (The environmental quality limit values of the hazardous substances in groundwater). Riigi Teataja, I 2010, 57, 374. (in Estonian) Resource document. www.riigiteataja.ee/akt/13349010. Accessed 12 Dec 2017.

  • Estonian Ministry of Environment. (2013). Regulation No 30 (adopted in 06.05.2002) Proovivõtumeetodid (Sampling methods). Riigi Teataja I, 28.05.2013, 4. (in Estonian) Resource document. www.riigiteataja.ee/akt/95070?leiaKehtiv. Accessed 12 Dec 2017.

  • Estonian Ministry of Environment. (2015). Regulation No 70 (adopted in 14.12.2015) Jäätmete liigitamise kord ja jäätmenimistu (Waste classification procedure and waste list). Riigi Teataja I, 18.12.2015, 14. (in Estonian) Resource document. www.riigiteataja.ee/akt/118122015014. Accessed 12 Dec 2017.

  • Estonian Ministry of Environment. (2016). Regulation No 77 (adopted in 30.12.2015), Prioriteetsete ainete ja prioriteetsete ohtlike ainete nimistu, prioriteetsete ainete, prioriteetsete ohtlike ainete ja teatavate muude saasteainete keskkonna kvaliteedi piirväärtused ning nende kohaldamise meetodid, vesikonnaspetsiifiliste saasteainete keskkonna kvaliteedi piirväärtused, ainete jälgimisnimekiri (The list of priority substances and priority hazardous substances, environmental quality standards for priority substances, priority hazardous substances and certain other pollutant and their application methods, environmental quality standards for river basin specific pollutants, watch list for substances ). Riigi Teataja I, 08.01.2016, 10. (in Estonian) Resource document. www.riigiteataja.ee/akt/108012016010. Accessed 12 Dec 2017.

  • Estonian Ministry of Social Affairs. (2013). Regulation No 82 (adopted 31.07.2001), Joogivee kvaliteedi- ja kontrollinõuded ning analüüsimeetodid (Quality and control requirements for drinking water and methods of analysis). Riigi Teataja I, 11.01.2013, 2. (in Estonian) Resource document. www.riigiteataja.ee/akt/916518?leiaKehtiv. Accessed 12 Dec 2017.

  • European Committee for Standardization. (1999). EVS-EN 27888 Vee kvaliteet Elektrijuhtivuse määramine; Estonian version of EN 2788:1993 Water quality—determination of electrical conductivity. Brussels: European Committee for Standardization.

    Google Scholar 

  • European Committee for Standardization. (2003). DIN EN 13657 Charakterisierung von Abfällen - Aufschluß zur anschließenden Bestimmung des in Königswasser löslichen Anteils an Elementen in Abfällen; German version of EN 13657:2002 characterization of waste - digestion for subsequent determination of aqua regia soluble portion of elements in waste. European Committee for Standardization, Brussels.

  • European Committee for Standardization. (2005). DIN EN ISO 17294–2 Wasserbeschaffenheit - Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS) - Teil 2: Bestimmung von 62 Elementen (ISO 17294–2:2003); German version of EN ISO 17294–2:2004 Water quality—application of inductively coupled plasma mass spectrometry (ICP-MS)—Part 2: Determination of 62 elements (ISO 17294–2:2003) - European Committee for Standardization, Brussels.

  • European Committee for Standardization. (2010). DIN EN ISO 16171 Schlamm, behandelter Bioabfall und Boden. Bestimmung von Elementen mittels Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS); German version of prEN 16171:2010 Sludge, treated biowaste and soil—determination of elements using inductively coupled plasma mass spectrometry (ICP-MS) - European Committee for Standardization, Brussels.

  • European Committee for Standardization. (2012). EVS-EN ISO 10523 Vee kvaliteet. pH määramine; Estonian version of EN ISO 10523:2008 Water quality—determination of pH (ISO 10523:2008). Brussels: European Committee for Standardization.

    Google Scholar 

  • European Communities. (2009). Common implementation strategy for the water framework directive (2000/60/EC), Guidance Document No. 19 Guidance on surface water chemical monitoring under the water framework directive. Office for Official Publications of the European Communities, 025. Luxembourg.

  • European Parliament and of the Council of the European Union. (2013). Directive 2013/39/EU of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Communities. L 226/1.

  • International Organization for Standardization. (1989). ISO 9297 Water quality—determination of chloride—silver nitrate titration with chromate indicator (Mohr's method). Geneva: International Organization for Standardization.

    Google Scholar 

  • International Organization for Standardization. (1992). ISO 10359–1 Water quality—determination of fluoride—Part 1: Electrochemical probe method for potable and lightly polluted water. Geneva: International Organization for Standardization.

    Google Scholar 

  • International Organization for Standardization. (2003). ISO 10381–4 Soil quality—sampling—Part 4: Guidance on the procedure for investigation of natural, near-natural and cultivated sites. Geneva: International Organization for Standardization.

    Google Scholar 

  • International Organization for Standardization. (2005). ISO 10381–5 Soil quality—sampling—Part 5: Guidance on the procedure for the investigation of urban and industrial sites with regard to soil contamination. Geneva: International Organization for Standardization.

    Google Scholar 

  • International Organization for Standardization. (2010). EVS-ISO 5667–6 Vee kvaliteet. Proovivõtt. Osa 6: Proovide võtmise juhend jõgedest ja vooluveekogudest; Estonian version of ISO 5667–6:2010 Water quality—sampling - Part 6: Guidance on sampling of rivers and streams. Geneva: International Organization for Standardization.

    Google Scholar 

  • International Organization for Standardization. (2012). EVS-EN ISO 10523 Vee kvaliteet. pH määramine; Estonian version of ISO 10523:2008 Water quality—determination of pH. Geneva: International Organization for Standardization.

    Google Scholar 

  • Kabata-Pendias, A. (2004). Soil–plant transfer of trace elements—an environmental issue. Geoderma, 122(2-4), 143–149. https://doi.org/10.1016/j.geoderma.2004.01.004.

    Article  CAS  Google Scholar 

  • Liira, M., Kirsimäe, K., Kuusik, R., & Mõtlep, R. (2009). Transformation of calcareous oil-shale circulation fluidized-bed combustion boiler ashes under wet conditions. Fuel, 88(4), 712–718. https://doi.org/10.1016/j.fuel.2008.08.012.

    Article  CAS  Google Scholar 

  • Mõtlep, R., Sild, T., Puura, E., & Kirsimäe, K. (2010). Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments. Journal of Hazardous Materials, 184(1-3), 567–573. https://doi.org/10.1016/j.jhazmat.2010.08.073.

    Article  Google Scholar 

  • Myrvang, M. B., Gjengedal, E., Heim, M., Krogstad, T., & Almås, Å. R. (2016). Geochemistry of barium in soils supplied with carbonatite rock powder and barium uptake to plants. Applied Geochemistry, 75, 1–8. https://doi.org/10.1016/j.apgeochem.2016.10.013.

    Article  CAS  Google Scholar 

  • NICPB. (2015). OSAMAT—post-project environmental monitoring in 2014 and 2015. Final report. Resource document. http://www.osamat.ee/et/dokumendid/aasta-2014-dokumendid/45--6/OSAMAT%20NICPB%20Final%20Report%20050116.pdf. Accessed 12 Dec 2017.

  • Oburger, E., Jäger, A., Pash, A., Stampfer, K., & Wenzel, W. W. (2016). Environmental impact assessment of wood ash utilization in forest road construction and maintenance—a field study. Science of the Total Environment, 544, 711–721. https://doi.org/10.1016/j.scitotenv.2015.11.123.

    Article  CAS  Google Scholar 

  • Ouyang, B., Akob, D. M., Dunlap, D., & Renock, D. (2017). Microbially mediated barite dissolution in anoxic brines. Applied Geochemistry, 76, 51–59. https://doi.org/10.1016/j.apgeochem.2016.11.008.

    Article  CAS  Google Scholar 

  • Paiste, P., Liira, M., Heinmaa, I., Vahur, S., & Kirsimäe, K. (2016). Alkali activated construction materials: assessing the alternative use for oil shale processing solid wastes. Construction and Building Materials, 122, 458–464. https://doi.org/10.1016/j.conbuildmat.2016.06.073.

    Article  CAS  Google Scholar 

  • Petersell, V., Mõttus, V., Täht, K., & Unit, L. (1996). Bulletin of the geochemical monitoring of soil 1992–1994. Tallinn: Eesti Geoloogiakeskus.

    Google Scholar 

  • Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimäe, K., Liira, M., & Mõtlep, R. (2012). Oil shale ash cementation properties in ash fields. Fuel, 93, 172–180. https://doi.org/10.1016/j.fuel.2011.08.050.

    Article  CAS  Google Scholar 

  • Raado, L.-M., Kuusik, R., Hain, T., Uibu, M., & Somelar, P. (2014). Oil shale ash based stone formation—hydration, hardening dynamics and phase transformations. Oil Shale, 31, 1–101.

    Article  Google Scholar 

  • Reinik, J., Irha, N., Steinnes, E., Urb, G., Jefimova, J., Piirisalu, E., & Loosaar, J. (2013). Changes in trace element contents in ashes of oil shale fueled PF and CFB boilers during operation. Fuel Processing Technology, 115, 174–181. https://doi.org/10.1016/j.fuproc.2013.06.001.

    Article  CAS  Google Scholar 

  • Reinik, J., Irha, N., Steinnes, E., Urb, G., Jefimova, J., & Piirisalu, E. (2014). Release of 22 elements from bottom and fly ash samples of oil shale fueled PF and CFB boilers by a two-cycle standard leaching test. Fuel Processing Technology, 124, 14–154.

    Article  Google Scholar 

  • Reinik, J., Irha, N., Steinnes, E., Piirisalu, E., Aruoja, V., Schultz, E., & Leppänen, M. (2015). Characterization of water extracts of oil shale retorting residues from gaseous and solid heat carrier processes. Fuel Processing Technology, 131, 443–451. https://doi.org/10.1016/j.fuproc.2014.12.024.

    Article  CAS  Google Scholar 

  • Sauve, S., Hendershot, W., & Allen, H. E. (2000). Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environmental Science and Technology, 34(7), 1125–1131. https://doi.org/10.1021/es9907764.

    Article  CAS  Google Scholar 

  • Sepp, K., Ivask, M., Kaasik, A., Mikk, M., & Peepson, A. (2005). Soil biota indicators for monitoring the Estonian agri-environmental programme. Agriculture, Ecosystems & Environment, 108(3), 264–273. https://doi.org/10.1016/j.agee.2005.02.007.

    Article  Google Scholar 

  • Tamm, K., Kallaste, P., Uibu, M., Kallas, J., Velts-Jänes, O., & Kuusik, R. (2016). Leaching thermodynamics and kinetics of oil shale waste key components. Oil Shale, 33(1), 80–99. https://doi.org/10.3176/oil.2016.1.07.

    Article  CAS  Google Scholar 

  • Truu, M. (2015). Technical monitoring and scientific analysis of data from OSAMAT project pilot sections. Final report. Resource document. Teede Tehnokeskus. http://www.osamat.ee/en/documents/aasta-2015-dokumendid/44--4.html. Accessed 12 Dec 2017.

  • Twardowska, I. (2004). Assessment of pollution potential from solid waste. In I. Twardowska, H. E. Allen, A. F. Kettrup, & W. J. Lacy (Eds.), Solid waste: assessment, monitoring and remediation (pp. 173–205). Waste management series 4. Amsterdam: Elsevier Ltd. https://doi.org/10.1016/S0713-2743(04)80010-2.

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Aleksandr Pototski for valuable help throughout the project.

Funding

The study was co-funded by the Eesti Energia AS and European Union's financial instrument LIFE+ (Project LIFE09 ENV/EE/000227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janek Reinik.

Electronic supplementary material

ESM 1

(DOC 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinik, J., Irha, N., Koroljova, A. et al. Use of oil shale ash in road construction: results of follow-up environmental monitoring. Environ Monit Assess 190, 59 (2018). https://doi.org/10.1007/s10661-017-6421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6421-5

Keywords

Navigation