Skip to main content
Log in

Characteristics of PAHs in farmland soil and rainfall runoff in Tianjin, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Rainfall runoff can remove certain amounts of pollutants from contaminated farmland soil and result in a decline in water quality. However, the leaching behaviors of polycyclic aromatic hydrocarbons (PAHs) with rainfall have been rarely reported due to wide variations in the soil compositions, rainfall conditions, and sources of soil PAHs in complex farmland ecosystems. In this paper, the levels, spatial distributions, and composition profiles of PAHs in 30 farmland soil samples and 49 rainfall-runoff samples from the Tianjin region in 2012 were studied to investigate their leaching behaviors caused by rainfall runoff. The contents of the Σ16PAHs ranged from 58.53 to 3137.90 μg/kg in the soil and 146.58 to 3636.59 μg/L in the runoff. In total, most of the soil sampling sites (23 of 30) were contaminated, and biomass and petroleum combustion were proposed as the main sources of the soil PAHs. Both the spatial distributions of the soil and the runoff PAHs show a decreasing trend moving away from the downtown, which suggested that the leaching behaviors of PAHs in a larger region during rainfall may be mainly affected by the compounds themselves. In addition, 4- and 5-ring PAHs are the dominant components in farmland soil and 3- and 4-ring PAHs dominate the runoff. Comparisons of the PAH pairs and enrichment ratios showed that acenaphthylene, acenaphthene, benzo[a]anthracene, chrysene, and fluoranthene were more easily transferred into water systems from soil than benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, and indeno[123-cd]pyrene, which indicated that PAHs with low molecular weight are preferentially dissolved due to their higher solubility compared to those with high molecular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal, T., Khillare, P. S., Shridhar, V., & Ray, S. (2009). Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. Journal of Hazardous Materials, 163, 1033–1039.

    Article  CAS  Google Scholar 

  • Baek, S. O., Field, R. A., Goldstone, M. E., Kirk, P. W., Lester, J. N., & Perry, R. (1991). A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water, Air, & Soil Pollution, 60, 279–300.

    Article  CAS  Google Scholar 

  • Bayat, J., Hashemi, S. H., Khoshbakht, K., Deihimfard, R., Shahbazi, A., & Momeni-Vesalian, R. (2015). Monitoring of polycyclic aromatic hydrocarbons on agricultural lands surrounding Tehran oil refinery. Environmental Monitoring and Assessment, 187, 1–15.

    Article  CAS  Google Scholar 

  • Cao, X. F., Liu, M., Song, Y. F., & Ackland, M. L. (2013). Composition, sources, and potential toxicology of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in Liaoning, People's Republic of China. Environmental Monitoring and Assessment, 185, 2231–2241.

    Article  CAS  Google Scholar 

  • Chen, C. W., & Chen, C. F. (2011). Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Marine Pollution Bulletin, 63, 417–423.

    Article  CAS  Google Scholar 

  • Chen, B. L., Xuan, X. D., Zhu, L. Z., Wang, J., Gao, Y. Z., Yang, K., Shen, X. Y., & Lou, B. F. (2004). Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Research, 38, 3558–3568.

    Article  CAS  Google Scholar 

  • Chen, G. Y., Guan, Y. N., Tong, L., Yan, B. B., & Hou, L. A. (2015a). Spatial estimation of PM2.5 emissions from straw open burning in Tianjin from 2001 to 2012. Atmosphere Environment, 122, 705–712.

    Article  CAS  Google Scholar 

  • Chen, R., Lv, J. G., Zhang, W., Liu, S., & Feng, J. M. (2015b). Polycyclic aromatic hydrocarbon (PAH) pollution in agricultural soil in Tianjin, China: a spatio-temporal comparison study. Environmental Earth Sciences, 74, 2743–2748.

    Article  CAS  Google Scholar 

  • Clément, N., Muresan, B., Hedde, M., & François, D. (2015). PAH dynamics in roadside environments: influence on the consistency of diagnostic ratio values and ecosystem contamination assessments. Science of the Total Environment, 538, 997–1009.

    Article  Google Scholar 

  • Crampon, M., Bureau, F., Akpa-Vinceslas, M., Bodilis, J., Machour, N., Le Derf, F., & Portet-Koltalo, F. (2014). Correlations between PAH bioavailability, degrading bacteria, and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils. Environmental Science and Pollution Research, 21, 8133–8145.

    Article  CAS  Google Scholar 

  • DiBlasi, C. J., Li, H., Davis, A. P., & Ghosh, U. (2009). Removal and fate of polycyclic aromatic hydrocarbon pollutants in an urban stormwater bioretention facility. Environmental Science & Technology, 43, 494–502.

    Article  CAS  Google Scholar 

  • Duan, L. Y., Liu, A. X., & Shi, J. (2012). Variations of precipitation indexes in Tianjin during 1918-2010. Progressus Inquisitiones de Mutatione Climatis, 8, 171–177.

    Google Scholar 

  • Esen, F., Sıddık Cindoruk, S., & Tasdemir, Y. (2008). Bulk deposition of polycyclic aromatic hydrocarbons (PAHs) in an industrial site of Turkey. Environmental Pollution, 152, 461–467.

    Article  CAS  Google Scholar 

  • Gan, S., Lau, E. V., & Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172, 532–549.

    Article  CAS  Google Scholar 

  • Gubler, A., Wachter, D., Blum, F., & Bucheli, T. D. (2015). Remarkably constant PAH concentrations in Swiss soils over the last 30 years. Environmental Science: Processes & Impacts, 17, 1816–1828.

    CAS  Google Scholar 

  • Guo, W., He, M. C., Yang, Z. F., Lin, C. Y., Quan, X. C., & Wang, H. Z. (2007). Distribution of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed, China. Chemosphere, 68, 93–104.

    Article  CAS  Google Scholar 

  • Hao, R., Wan, H. F., Song, Y. T., Jiang, H., & Peng, S. L. (2007). Polycyclic aromatic hydrocarbons in agricultural soils of the southern subtropics, China. Pedosphere, 17, 673–680.

    Article  CAS  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169, 1–15.

    Article  CAS  Google Scholar 

  • Hopkins, J. (1991). IARC monographs on the evaluation of carcinogenic risks to humans: volume 48. Some flame retardants and textile chemicals, and exposures in the textile manufacturing industry. Food and Chemical Toxicology, 29, 647–648.

    Google Scholar 

  • Hwang, S., & Cutright, T. J. (2003). Effect of expandable clays and cometabolism on PAH biodegradability. Environmental Science and Pollution Research, 10, 277–280.

    Article  CAS  Google Scholar 

  • Jiang, Y. F., Wang, X. T., Wang, F., Jia, Y., Wu, M. H., Sheng, G. Y., & Fu, J. M. (2009). Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China. Chemosphere, 75, 1112–1118.

    Article  CAS  Google Scholar 

  • Jonker, M. T. O., & Koelmans, A. A. (2002). Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations. Environmental Science & Technology, 36, 3725–3734.

    Article  CAS  Google Scholar 

  • Kwach, B. O., Lalah, J. O., & Shem, W. O. (2009). Spartial and seasonal variations in concentrations of polycyclic aromatic hydrocarbons in water and sediment of Kisumu City Bay of Winam Gulf, Lake Victoria-Kenya. Bulletin of Environment Contamination and Toxicology, 83, 734–741.

    Article  CAS  Google Scholar 

  • Kwon, H. O., & Choi, S. D. (2014). Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city, South Korea. Science of the Total Environment, 470-471, 1494–1501.

    Article  CAS  Google Scholar 

  • Lang, C., Tao, S., Wang, X. J., Zhang, G., & Fu, J. M. (2008). Modeling polycyclic aromatic hydrocarbon composition profiles of sources and receptors in the Pearl River Delta, China. Environmental Toxicology and Chemistry, 27, 4–9.

    Article  CAS  Google Scholar 

  • Lau, E. V., Gan, S., Ng, H. K., & Poh, P. E. (2014). Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environmental Pollution, 184, 640–649.

    Article  CAS  Google Scholar 

  • Lee, B. K., & Lee, C. B. (2004). Development of an improved dry and wet deposition collector and the atmospheric deposition of PAHs onto Ulsan Bay, Korea. Atmosphere Environment, 38, 863–871.

    Article  CAS  Google Scholar 

  • Li, J. F., Dong, H., Zhang, D. H., Han, B., Zhu, C. J., Liu, S. P., Liu, X. M., Ma, Q. Y., & Li, X. G. (2015). Sources and ecological risk assessment of PAHs in surface sediments from Bohai Sea and northern part of the Yellow Sea, China. Marine Pollution Bulletin, 96, 485–490.

    Article  CAS  Google Scholar 

  • Luo, X. J., Mai, B. X., Yang, Q. S., Fu, J. M., Sheng, G. Y., & Wang, Z. S. (2004). Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China. Marine Pollution Bulletin, 48, 1102–1115.

    Article  CAS  Google Scholar 

  • Luo, X. L., Zheng, Y., Wu, B., Lin, Z. R., Han, F., Zhang, W., & Wang, X. J. (2013). Impact of carbonaceous materials in soil on the transport of soil-bound PAHs during rainfall-runoff events. Environmental Pollution, 182, 233–241.

    Article  CAS  Google Scholar 

  • Luo, X. L., Zheng, Y., Lin, Z. R., Wu, B., Han, F., Tian, Y., Zhang, W., & Wang, X. J. (2015). Evaluating potential non-point source loading of PAHs from contaminated soils: a fugacity-based modeling approach. Environmental Pollution, 196, 1–11.

    Article  CAS  Google Scholar 

  • Ma, L. L., Chu, S. G., Cheng, H. X., Wang, X. T., Liu, X. F., & Xu, X. B. (2005). Polycyclic aromatic hydrocarbons contamination in subsoil from outskirts of Beijing, People’s Republic of China. Geoderma, 129, 200–210.

    Article  CAS  Google Scholar 

  • Ma, W. L., Liu, L. Y., Tian, C. G., Qi, H., Jia, H. L., Song, W. W., & Li, Y. F. (2015). Polycyclic aromatic hydrocarbons in Chinese surface soil: occurrence and distribution. Environmental Science and Pollution Research, 22, 4190–4200.

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach, B. (1996). Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Applied Geochemistry, 11, 121–127.

    Article  Google Scholar 

  • Marusenko, Y., Herckes, P., & Hall, S. J. (2011). Distribution of polycyclic aromatic hydrocarbons in soils of an arid urban ecosystem. Water, Air, & Soil Pollution, 219, 473–487.

    Article  CAS  Google Scholar 

  • Pane, L., Boccardo, S., Bonfiglioli, F., Mariottini, G. L., Priano, F., & Conio, O. (2005). Polycyclic aromatic hydrocarbons in water, seston and copepods in a harbour area in the Western Mediterranean (Ligurian Sea). Marine Ecology, 26, 89–99.

    Article  CAS  Google Scholar 

  • Pazos, M., Rosales, E., Alcántara, T., Gómez, J., & Sanromán, M. A. (2010). Decontamination of soils containing PAHs by electroremediation: a review. Journal of Hazardous Materials, 177, 1–11.

    Article  CAS  Google Scholar 

  • Peters, C. A., Knightes, C. D., & Brown, D. G. (1999). Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environmental Science & Technology, 33, 4499–4507.

    Article  CAS  Google Scholar 

  • Ping, L. F., Luo, Y. M., Zhang, H. B., Li, Q. B., & Wu, L. H. (2007). Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environmental Pollution, 147, 358–365.

    Article  CAS  Google Scholar 

  • Readman, J. W., Mantoura, R. F. C., & Rhead, M. M. (1984). The physico-chemical speciation of polycyclic aromatic hydrocarbons (PAH) in aquatic systems. Fresenius Journal of Analytical Chemistry, 319, 126–131.

    Article  CAS  Google Scholar 

  • Rianawati, E., & Balasubramanian, R. (2009). Optimization and validation of solid phase micro-extraction (SPME) method for analysis of polycyclic aromatic hydrocarbons in rainwater and stormwater. Physics and Chemistry of the Earth, 34, 857–865.

    Article  Google Scholar 

  • Savinov, V. M., Savinova, T. N., Matishov, G. G., Dahle, S., & Næs, K. (2003). Polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia. Science of the Total Environment, 306, 39–56.

    Article  CAS  Google Scholar 

  • Shi, Z., Tao, S., Pan, B., Fan, W., He, X. C., Zuo, Q., Wu, S. P., Li, B. G., Cao, J., Liu, W. X., Xu, F. L., Wang, X. J., Shen, W. R., & Wong, P. K. (2005). Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environmental Pollution, 134, 97–111.

    Article  CAS  Google Scholar 

  • TEPB. (1996). Environmental quality report of Tianjin. Tianjin: Tianjin Environmental Protection Bureau.

    Google Scholar 

  • USEPA. (1993). Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons, EPA/600/R/089. Washington, DC: Office of Research and Development. US Environmental Protection Agency.

    Google Scholar 

  • Wang, X. L., Tao, S., Xu, F. L., Dawson, R. W., Cao, J., Li, B. G., & Fang, J. Y. (2002). Modeling the fate of benzo[a]pyrene in the wastewater-irrigated areas of Tianjin with a fugacity model. Journal of Environmental Quality, 31, 896–903.

    CAS  Google Scholar 

  • Wang, Z., Chen, J. W., Qiao, X. L., Yang, P., Tian, F. L., & Huang, L. P. (2007). Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: a case study in Dalian, China. Chemosphere, 68, 965–971.

    Article  CAS  Google Scholar 

  • Wang, X., Yuan, K., Chen, B., Lin, L., Huang, B., & Luan, T. (2016). Monthly variation and vertical distribution of parent and alkyl polycyclic aromatic hydrocarbons in estuarine water column: role of suspended particulate matter. Environmental Pollution, 216, 599–607.

    Article  CAS  Google Scholar 

  • Yan, L. L., Li, X., Chen, J. M., Wang, X. J., Du, J. F., & Ma, L. (2012). Source and deposition of polycyclic aromatic hydrocarbons to Shanghai, China. Journal of Environmental Sciences, 24, 116–123.

    Article  CAS  Google Scholar 

  • Yap, C. L., Gan, S., & Ng, H. K. (2011). Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere, 83, 1414–1430.

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

  • Zhang, Z. L., Huang, J., Yu, G., & Hong, H. S. (2004). Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environmental Pollution, 130, 249–261.

    Article  CAS  Google Scholar 

  • Zhang, X. X., Cheng, S. P., Zhu, C. J., & Sun, S. L. (2006). Microbial PAH-degradation in soil: degradation pathways and contributing factors. Pedosphere, 16, 555–565.

    Article  CAS  Google Scholar 

  • Zheng, Y., Luo, X. L., Zhang, W., Wu, B., Han, F., Lin, Z. R., & Wang, X. J. (2012). Enrichment behavior and transport mechanism of soil-bound PAHs during rainfall-runoff events. Environmental Pollution, 171, 85–92.

    Article  CAS  Google Scholar 

  • Zhong, Y. C., & Zhu, L. Z. (2013). Distribution, input pathway and soil-air exchange of polycyclic aromatic hydrocarbons in Banshan Industry Park, China. Science of the Total Environment, 444, 177–182.

    Article  CAS  Google Scholar 

  • Zhou, J. L., Hong, H., Zhang, Z., Maskaoui, K., & Chen, W. (2000). Multi-phase distribution of organic micropollutants in Xiamen Harbour, China. Water Research, 34, 2132–2150.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (21477138), the State Key Laboratory Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (KF2016-12), and the China Postdoctoral Science Foundation (2016 M602210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongshan Zhao.

Electronic supplementary material

ESM 1

Values of Σ16PAH, Σ7CPAH, and TEQ for the 30 soil samples; average concentrations and standard deviations of the individual PAHs, Σ16PAH, and Σ7CPAH in the soil and runoff from different vegetation types; spatial patterns of Σ7CPAHs and TEQ in the soil samples; enrichment ratios of the different PAHs in the different vegetation types. (DOCX 185 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Xu, M., Liu, A. et al. Characteristics of PAHs in farmland soil and rainfall runoff in Tianjin, China. Environ Monit Assess 189, 558 (2017). https://doi.org/10.1007/s10661-017-6290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6290-y

Keywords

Navigation