Skip to main content

Advertisement

Log in

Fluoride-contaminated groundwater of Birbhum district, West Bengal, India: Interpretation of drinking and irrigation suitability and major geochemical processes using principal component analysis

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present research work is confined to a rural tract located in the north-western part of Birbhum district, West Bengal, India. Chemical analysis of the groundwater shows the cations is in the order of Na+ > Ca2+ > Mg2+ while for anions it is HCO3  > Cl > SO4 2─ > NO3 . The F concentration was found to vary from 0.01 to 18 mg/L in the pre-monsoon and 0.023 to 19 mg/L in post-monsoon period. 86% of samples show low F content (<0.60 mg/L) whereas, 8% exhibit elevated concentration of F (>1.2 mg/L) mainly in the central and north-central parts of the study area at a depth of 46 to 98 m. The prime water type is CaHCO3 succeeded by F-rich NaHCO3 and NaCl waters. The suitability analysis reveals that the water at about 81% of the sampling sites is unsuitable for drinking and at 16% of sites unsuitable for irrigation. The alkaline nature of the water and/or elevated concentration of Fe, Mn and F make the water unsuitable for potable purposes while the high F and Na+ contents delimit the groundwater for irrigation uses. Multivariate statistical analysis suggests that chemical weathering along with ion exchange is the key process, responsible for mobilization of fluoride in groundwater of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali Khan, T. (2015). Groundwater quality evaluation using multivariate methods, in parts of anga Sot Sub-Basin, Ganga Basin, India. Journal of Water Resource and Protection, 7, 769–780.

    Article  CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (21th ed.). Washington: American Public Health Association.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). Rotterdam: Balkema.

    Book  Google Scholar 

  • Bardsen, A., Bgorraton, K., & Selving, K. A. (1996). Variability in fluoride content of sub-surface water reservoir. Acta Odontologica Scandinavica, 54, 343–347.

    Article  CAS  Google Scholar 

  • Batabyal, A. K. (2017). Hydrogeochemical processes and contaminants enrichment with special emphasis on fluoride in groundwater of Birbhum district, West Bengal, India. Environmental Earth Sciences, 76, 285. doi:10.1007/s12665-017-6584-y.

    Article  Google Scholar 

  • Batabyal, A. K., & Chakraborty, S. (2015). Hydrogeochemistry and water quality index in the assessment of groundwater quality for drinking uses. Water Environment. Research, 87, 607–617.

    Article  CAS  Google Scholar 

  • Berger, T., Peltola, P., Drake, H., & Astrom, M. (2012). Impact of a fluorine-rich granite intrusion on levels and distribution of fluoride in a small boreal catchment. Aquatic Geochemistry, 18, 77–94.

    Article  CAS  Google Scholar 

  • Berger, T., Mathurin, F. A., Drake, H., & Astrom, M. E. (2016). Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks. Science of the Total Environment, 569, 948–960.

    Article  Google Scholar 

  • BIS. (1991). Indian Standard - Drinking water specification. Bureau of Indian Standards, IS 10500:1–8.

  • Central Ground Water Board. (1985) Hydrogeology and groundwater resources of Birbhum district, West Bengal. Technical Report Series D:30.

  • Chae, G. T., Yun, S. T., Mayer, B., Kim, K. H., Kim, S. Y., Kwon, J. S., Kim, K., & Koh, Y. K. (2007). Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, 385, 272–283.

    Article  CAS  Google Scholar 

  • Datta, P. S., Deb, D. L., & Tyagi, S. K. (1996). Stable isotope (O18) investigations on the processes controlling fluoride contamination of groundwater. Journal of Contaminant Hydrology, 24, 85–96.

    Article  CAS  Google Scholar 

  • Davis, S. N., & De Wiest, R. J. M. (1966). Hydrogeology. New York: Wiley.

    Google Scholar 

  • Eaton, F. M. (1950). Significance of carbonate in irrigation waters. Soil Science, 69, 123–133.

    Article  CAS  Google Scholar 

  • Fetter, C. W. (1994). Applied hydrogeology (3rd ed.p. 616). New York: Macmillan College Publishing, Inc..

    Google Scholar 

  • Freeze, A. R., & Cherry, J. A. (1979). Groundwater. New Jersey: Prentice-Hall.

    Google Scholar 

  • Gaciri, S. J., & Davies, T. C. (1993). The occurrence and geochemistry of fluoride in some natural waters of Kenya. Journal of Hydrology, 143, 395–412.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 17, 1088–1090.

    Article  Google Scholar 

  • Guo, Q. H., Wang, Y. X., Ma, T., & Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan basin, northern China. Journal of Geochemical Exploration, 93, 1–12.

    Article  CAS  Google Scholar 

  • Guo, H. M., Zhang, Y., Xing, L. N., & Jia, Y. F. (2012). Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. Applied Geochemistry, 27(11), 2187–2196.

    Article  CAS  Google Scholar 

  • Handa, B. K. (1975). Geochemistry and genesis of fluoride containing groundwaters in India. Groundwater, 13, 275–281.

    Article  CAS  Google Scholar 

  • Handa, B. K. (1988). Fluoride occurrence in natural waters in India and its significance. Bhu-Jal News, 3(2), 31–37.

    Google Scholar 

  • http://cgwb.gov.in/District_Profile/WestBengal/Birbhum accessed on 06.03.2015.

  • https://data.gov.in/catalog/villagetown-wise-primary-census-abstract-2011-west-bengal#web_ catalog_ tabs_block_10 accessed on 24.07.2015.

  • Invernizzi, A. L., & Oliveira, S. M. B. (2004). Hydrochemical characterization of a watershed through factor analysis. Revista A’guas Subterraˆneas., 18, 67–77.

    Google Scholar 

  • ISI. (1983). Indian standard specification for drinking water. IS:10500.

  • Jain, C. K., Bandyopadhyay, A., & Bhadra, A. (2010). Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India. Environmental Monitoring and Assessment, 166, 663–676.

    Article  CAS  Google Scholar 

  • Kortatsi, B. K. (2007). Hydrochemical framework of groundwater in the Ankobra Basin, Ghana. Aquatic Geochemistry, 13, 41–74.

    Article  CAS  Google Scholar 

  • Kumar, M., Ramanathan, A. L., Rao, M. S., & Kumar, B. (2006). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039.

    Article  CAS  Google Scholar 

  • Li, C., Gao, X., & Wang, Y. (2015). Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Science of the Total Environment, 508, 155–165.

    Article  CAS  Google Scholar 

  • Mondal, D., Gupta, S., Reddy, D. V., & Nagabhushanam, P. (2014). Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum district, West Bengal, India. Journal of Geochemical Exploration, 145, 190–206.

    Article  CAS  Google Scholar 

  • Mondal, D., Gupta, S., Reddy, D. V., & Dutta, G. (2016). Fluoride enrichment in an alluvial aquifer with its subsequent effect on human health in Birbhum district, West Bengal, India. Chemosphere, 168, 817–824.

    Article  Google Scholar 

  • Mukherjee, B., Rao, M. G., & Karunakaran, C. (1969). Genesis of kaoline deposits of Birbhum, West Bengal, India. Clay Minerals, 8, 161–170.

    Article  CAS  Google Scholar 

  • Olajire, A. A., & Imeokparia, F. E. (2001). Water quality assessment of Osun River: studies on inorganic nutrients. Environmental Monitoring and Assessment, 69(1), 17–28.

    Article  CAS  Google Scholar 

  • Ozsvath, D. L. (2008). Fluoride and environmental health: a review. Reviews in Environmental Science and bio/Technology, 8(1), 59–79.

    Article  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. United States Geol Survey, Water-Resources Investigations Report, 99–4259.

  • Pickering, W. F. (1985). The mobility of soluble fluoride in soils. Environmental Pollution, 9, 281–308.

    CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analysis. Transactions - American Geophysical Union, 25, 914–923.

    Article  Google Scholar 

  • Piper, A. M. (1953). A graphic procedure in the geochemical interpretation of water analysis. United States Geological Survey, Washington DC.

  • Rajmohan, N., & Elango, L. (2004). Identification and evolution of hydrogeochemical processes in the groundwater environ-ment in an area of the Palar and Cheyyar River Basins, Southern India. Environmental Geology, 46, 47–61.

    CAS  Google Scholar 

  • Raju, K. C. B. (1998). Importance of recharging depleted aquifers: state of the art of artificial recharge in India. Journal of the Geological Society of India, 5, 429–454.

    Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Agricultural hand book 60, United States Department of Agriculture, Washington D.C., 160 p.

  • Sajil Kumar, P. J., Jegathambal, P., & James, E. J. (2014). Factors influencing the high fluoride concentration in groundwater of Vellore District, South India. Environmental Earth Sciences, 72, 2437–2446.

    Article  CAS  Google Scholar 

  • Sawyer, C. N., & McCarty, P. L. (1967). Chemistry of sanitary engineers. New York: McGraw Hill.

    Google Scholar 

  • Saxena, V. K., & Ahmed, S. (2003). Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environmental Geology, 43, 731–736.

    CAS  Google Scholar 

  • Schoeller, H. (1965). Qualitative evaluation of groundwater resources in: methods and techniques of groundwater investigations and development. UNESCO 54–83.

  • Schoeller, H. (1967). Geochemistry of groundwater in: an international guide for research and practice. UNESCO 1–18.

  • Sikdar, P. K., & Chakraborty, S. (2008). Genesis of arsenic in groundwater of north Bengal Plain using PCA: A case study of English Bazar Block, Malda District, West Bengal, India. Hydrological Processes, 22, 1796–1809.

    Article  CAS  Google Scholar 

  • Singh, C. K., Rina, K., Singh, R. P., Shashtri, S., Kamal, V., & Mukherjee, S. (2011). Geochemical modeling of high fluoride concentration in groundwater of Pokhran Area of Rajasthan, India. Bulletin of Environmental Contamination and Toxicology, 86, 152–158.

    Article  CAS  Google Scholar 

  • Srivastava, S. K., & Ramanathan, A. L. (2008). Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology, 53, 1509–1528.

    Article  CAS  Google Scholar 

  • Subba Rao, N. (2011). High-fluoride groundwater. Environmental Monitoring and Assessment, 176, 637–645.

    Article  CAS  Google Scholar 

  • Subba Rao, N., & Devadas, D. J. (2003). Fluoride incidence in groundwater in an area of peninsula India. Environmental Geology, 45, 243–251.

    Article  Google Scholar 

  • Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River basin, Tamil Nadu, India. Environmental Geology, 47, 1099–1110.

    Article  CAS  Google Scholar 

  • United States Salinity Laboratory. (1954). Diagnosis and improvement of saline and alkali soils. US Department of Agricultural soils. United States Department of Agricultural Hand Book 60, Washington.

  • Wen, X., Wu, Y., Zhang, Y., & Liu, F. (2005). Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, northwestern China. Environmental Geology, 48, 665–675.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., & Blum, W. E. H. (1992). Fluoride speciation and mobility in fluoride contaminated soil and minerals. Soil Science, 153, 357–364.

    Article  CAS  Google Scholar 

  • WHO. (2011). Guidelines for drinking-water quality (Fourth ed.). Geneva: World Health Organization.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation waters. Washington: United States Department of Agriculture.

    Google Scholar 

Download references

Acknowledgments

The author (AKB) is grateful to the Director, CSIR-Central Mechanical Engineering Research Institute, Durgapur, for giving permission to publish this paper. The author is also indebted to CSIR, Government of India, for the financial support through the Clean Water Project (ESC0306). The author is thankful to the authorities of Haridaspur and Narayanpur Gram Panchayats, Birbhum district, West Bengal, for providing support during the field studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Kumar Batabyal.

Electronic supplementary material

Table S1

(DOCX 25 kb)

Table S2

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batabyal, A.K., Gupta, S. Fluoride-contaminated groundwater of Birbhum district, West Bengal, India: Interpretation of drinking and irrigation suitability and major geochemical processes using principal component analysis. Environ Monit Assess 189, 369 (2017). https://doi.org/10.1007/s10661-017-6041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6041-0

Keywords

Navigation