Skip to main content

Advertisement

Log in

Evaluating climatic and non-climatic stresses for declining surface water quality in Bagmati River of Nepal

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Both climatic and non-climatic factors affect surface water quality. Similar to its effect across various sectors and areas, climate change has potential to affect surface water quality directly and indirectly. On the one hand, the rise in temperature enhances the microbial activity and decomposition of organic matter in the river system and changes in rainfall alter discharge and water flow in the river ultimately affecting pollution dilution level. On the other hand, the disposal of organic waste and channelizing municipal sewage into the rivers seriously worsen water quality. This study attempts to relate hydro-climatology, water quality, and impact of climatic and non-climatic stresses in affecting river water quality in the upper Bagmati basin in Central Nepal. The results showed that the key water quality indicators such as dissolved oxygen and chemical oxygen demand are getting worse in recent years. No significant relationships were found between the key water quality indicators and changes in key climatic variables. However, the water quality indicators correlated with the increase in urban population and per capita waste production in the city. The findings of this study indicate that dealing with non-climatic stressors such as reducing direct disposal of sewerage and other wastes in the river rather than emphasizing on working with the effects from climate change would largely help to improve water quality in the river flowing from highly populated urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ADB. (2013). Solid waste management in Nepal: current status and policy recommendations. Manila: Asian Development Bank (ADB).

    Google Scholar 

  • Aral, M. M. (2014). Perspectives and challenges on climate change and its effects on water quality and health. Water Quality, Exposure and Health, 6(1), 1–5. doi:10.1007/s12403-014-0125-7.

    Article  Google Scholar 

  • Atibu, E. K., Devarajan, N., Thevenon, F., Mwanamoki, P. M., Tshibanda, J. B., Mpiana, P. T., et al. (2013). Concentration of metals in surface water and sediment of Luilu and Musonoie Rivers, Kolwezi-Katanga, Democratic Republic of Congo. Applied Geochemistry, 39, 26–32. doi:10.1016/j.apgeochem.2013.09.021.

    Article  CAS  Google Scholar 

  • Babel, M. S., Bhusal, S. P., Wahid, S. M., & Agarwal, A. (2014). Climate change and water resources in the Bagmati River basin, Nepal. Theoretical and Applied Climatology, 115(3), 639–654. doi:10.1007/s00704-013-0910-4.

    Article  Google Scholar 

  • Babel, M. S., Pandey, V. P., Rivas, A. A., & Wahid, S. M. (2011). Indicator-based approach for assessing the vulnerability of freshwater resources in the Bagmati River basin, Nepal. Environmental Management, 48(5), 1044–1059. doi:10.1007/s00267-011-9744-y.

    Article  Google Scholar 

  • Baidya, S. K. (2007). 32 Climate research in the Nepal Himalaya. In G. T. Renato Baudo, & V. Elisa (Eds.), Developments in earth surface processes (Volume 10, pp. 291–299): Elsevier.

  • Bhatt, M. P., McDowell, W. H., Gardner, K. H., & Hartmann, J. (2013). Chemistry of the heavily urbanized Bagmati River system in Kathmandu Valley, Nepal: export of organic matter, nutrients, major ions, silica, and metals. Environmental Earth Sciences, 71(2), 911–922. doi:10.1007/s12665-013-2494-9.

    Article  Google Scholar 

  • Bhattarai, K., & Conway, D. (2010). Urban vulnerabilities in the Kathmandu Valley, Nepal: visualizations of human/hazard interactions. Journal of Geographic Information System, 02(02), 20. doi:10.4236/jgis.2010.22012.

    Article  Google Scholar 

  • CBS. (2014). Population atlas of Nepal, 2014. Kathmandu: Central Bureau of Statistics.

    Google Scholar 

  • Chand, M. B., & Panthi, J. (2011). Bagmati River water quality mapping using GIS. Kathandu: The Small Earth Nepal (SEN).

    Google Scholar 

  • Dahal, V., Shakya, N. M., & Bhattarai, R. (2016). Estimating the impact of climate change on water availability in Bagmati Basin, Nepal. Environmental Processes, 3(1), 1–17. doi:10.1007/s40710-016-0127-5.

    Article  Google Scholar 

  • Dangi, M. B., Pretz, C. R., Urynowicz, M. A., Gerow, K. G., & Reddy, J. M. (2011). Municipal solid waste generation in Kathmandu, Nepal. Journal of Environmental Management, 92(1), 240–249. doi:10.1016/j.jenvman.2010.09.005.

    Article  Google Scholar 

  • Delpla, I., Jung, A. V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35(8), 1225–1233. doi:10.1016/j.envint.2009.07.001.

    Article  CAS  Google Scholar 

  • Dhital, Y. P., Tang, Q., & Shi, J. (2013). Hydroclimatological changes in the Bagmati River basin, Nepal. Journal of Geographical Sciences, 23(4), 612–626. doi:10.1007/s11442-013-1032-8.

    Article  Google Scholar 

  • Evans, A. E. V., Hanjra, M. A., Jiang, Y., Qadir, M., & Drechsel, P. (2012). Water quality: assessment of the current situation in Asia. International Journal of Water Resources Development, 28(2), 195–216. doi:10.1080/07900627.2012.669520.

    Article  Google Scholar 

  • Flores, J. C. (2002). Comments to the use of water quality indices to verify the impact of Córdoba City (Argentina) on Suquı́a river. Water Research, 36(18), 4664–4666. doi:10.1016/S0043-1354(02)00181-1.

    Article  CAS  Google Scholar 

  • Gündüz, O. (2015). Water quality perspectives in a changing world. Water Quality, Exposure and Health, 7(1), 1–3. doi:10.1007/s12403-015-0161-y.

    Article  Google Scholar 

  • Ha, S.-R., & Pokhrel, D. (2001). Water quality management planning zone development by introducing a GIS tool in Kathmandu valley, Nepal. Water Science and Technology, 44(7), 209–221.

    CAS  Google Scholar 

  • ICIMOD. (2015). The Himalayan climate and water atlas: Impacts of climate change on water resources in five of Asia's major river basins. Kathmandu: International Center for Integrated Mountain Development (ICIMOD).

    Google Scholar 

  • Interlandi, S. J., & Crockett, C. S. (2003). Recent water quality trends in the Schuylkill River, Pennsylvania, USA: a preliminary assessment of the relative influences of climate, river discharge and suburban development. Water Research, 37(8), 1737–1748. doi:10.1016/S0043-1354(02)00574-2.

    Article  CAS  Google Scholar 

  • IPCC (2007). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In O. C. Martin Parry, Jean Palutikof, Paul van der Linden, Clair Hanson (Eds.), London: Cambridge University Press.

  • Jayakumar, R., Steger, K., Chandra, T. S., & Seshadri, S. (2013). An assessment of temporal variations in physicochemical and microbiological properties of barmouths and lagoons in Chennai (southeast coast of India). Marine Pollution Bulletin, 70(1–2), 44–53. doi:10.1016/j.marpolbul.2013.02.005.

    Article  CAS  Google Scholar 

  • Kambole, M. S. (2003). Managing the water quality of the Kafue River. Physics and Chemistry of the Earth, Parts A/B/C, 28(20–27), 1105–1109. doi:10.1016/j.pce.2003.08.031.

    Article  Google Scholar 

  • Kannel, P. R., Lee, S., Kanel, S. R., Khan, S. P., & Lee, Y.-S. (2007). Spatial–temporal variation and comparative assessment of water qualities of urban river system: a case study of the river Bagmati (Nepal). Environmental Monitoring and Assessment, 129(1), 433–459. doi:10.1007/s10661-006-9375-6.

    Article  CAS  Google Scholar 

  • Karn, K. S., & Harada, H. (2001). Surface water pollution in three urban territories of Nepal, India, and Bangladesh. Environmental Management, 28(4), 483–496. doi:10.1007/s002670010238.

    Article  CAS  Google Scholar 

  • Khedun, C. P., & Singh, V. P. (2013). Climate change, water, and health: a review of regional challenges. Water Quality, Exposure and Health, 6(1), 7–17. doi:10.1007/s12403-013-0107-1.

    Google Scholar 

  • Kundzewicz, Z. W., & Krysanova, V. (2010). Climate change and stream water quality in the multi-factor context. Climatic Change, 103(3), 353–362. doi:10.1007/s10584-010-9822-9.

    Article  Google Scholar 

  • Mimikou, M. A., Baltas, E., Varanou, E., & Pantazis, K. (2000). Regional impacts of climate change on water resources quantity and quality indicators. Journal of Hydrology, 234(1–2), 95–109. doi:10.1016/S0022-1694(00)00244-4.

    Article  CAS  Google Scholar 

  • Mirza, M. M. Q., Warrick, R. A., & Ericksen, N. J. (2003). The implications of climate change on floods of the Ganges, Brahmaputra and Meghna Rivers in Bangladesh. Climatic Change, 57(3), 287–318. doi:10.1023/a:1022825915791.

    Article  Google Scholar 

  • Niazi, F., Mofid, H., & Fazel Modares, N. (2014). Trend analysis of temporal changes of discharge and water quality parameters of Ajichay River in four recent decades. Water Quality, Exposure and Health, 6(1), 89–95. doi:10.1007/s12403-013-0108-0.

    Article  CAS  Google Scholar 

  • NTNC/GoN (2009). Bagmati Action Plan (2009–2014). National Trust for Nature COnservation (NTNC) and Government of Nepal.

  • Olson, J. R. (2012). The influence of geology and other environmental factors on stream water chemistry and benthic invertebrate assemblages. Utah: Utah State University.

    Google Scholar 

  • Pant, B. R. (2011). Ground water quality in the Kathmandu valley of Nepal. Environmental Monitoring and Assessment, 178(1), 477–485. doi:10.1007/s10661-010-1706-y.

    Article  CAS  Google Scholar 

  • Pathak, D. R., Yatabe, R., & Bhandary, N. P. (2015). Identification of major factors affecting spatial and temporal variation of water quality in Kathmandu Basin, Nepal, using multivariate statistical analysis. International Journal of Water, 9(3), 209–225. doi:10.1504/IJW.2015.070357.

    Article  CAS  Google Scholar 

  • Paudyal, R., Kang, S., Sharma, C. M., Tripathee, L., Sillanpää, M. (2016). Variations of the physicochemical parameters and metal levels and their risk assessment in urbanized Bagmati River, Kathmandu, Nepal. Journal of Chemistry, 2016, 13. doi:10.1155/2016/6025905.

  • Prathumratana, L., Sthiannopkao, S., & Kim, K. W. (2008). The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environment International, 34(6), 860–866. doi:10.1016/j.envint.2007.10.011.

    Article  CAS  Google Scholar 

  • Qian, Y., Migliaccio, K. W., Wan, Y., & Li, Y. (2007). Surface water quality evaluation using multivariate methods and a new water quality index in the Indian River Lagoon, Florida. Water Resources Research, 43(8), n/a-n/a, doi:10.1029/2006WR005716.

  • Senthilkumar, M., Arumugam, R., Gnanasundar, D., Thambi, D. S. C., & Kumar, E. S. (2015). Effects of geological structures on groundwater flow and quality in hardrock regions of northern Tirunelveli district, southern India. Journal of Earth System Science, 124(2), 405–418. doi:10.1007/s12040-015-0538-0.

    Article  CAS  Google Scholar 

  • Sharma, R. H., & Shakya, N. M. (2006). Hydrological changes and its impact on water resources of Bagmati watershed, Nepal. Journal of Hydrology, 327(3–4), 315–322. doi:10.1016/j.jhydrol.2005.11.051.

    Article  Google Scholar 

  • Shrestha, O. M., Koirala, A., Hanisch, J., Busch, K., Kerntke, M., & Jäger, S. (1999). A geo-environmental map for the sustainable development of the Kathmandu Valley, Nepal. GeoJournal, 49(2), 165–172. doi:10.1023/a:1007076813975.

    Article  Google Scholar 

  • Thapa, R. B., & Murayama, Y. (2010). Drivers of urban growth in the Kathmandu valley, Nepal: examining the efficacy of the analytic hierarchy process. Applied Geography, 30(1), 70–83. doi:10.1016/j.apgeog.2009.10.002.

    Article  Google Scholar 

  • Thapa, R. B., & Murayama, Y. (2012). Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landscape and Urban Planning, 105(1–2), 140–148. doi:10.1016/j.landurbplan.2011.12.007.

    Article  Google Scholar 

  • Tshibanda, J. B., Devarajan, N., Birane, N., Mwanamoki, P. M., Atibu, E. K., Mpiana, P. T., et al. (2014). Microbiological and physicochemical characterization of water and sediment of an urban river: N’Djili River, Kinshasa, Democratic Republic of the Congo. Sustainability of Water Quality and Ecology, 3–4, 47–54. doi:10.1016/j.swaqe.2014.07.001.

    Article  Google Scholar 

  • Udmale, P., Ishidaira, H., Thapa, B., & Shakya, N. (2016). The status of domestic water demand: supply deficit in the Kathmandu Valley, Nepal. Water, 8(5), 196.

    Article  Google Scholar 

  • Van Vliet, M. T. H., & Zwolsman, J. J. G. (2008). Impact of summer droughts on the water quality of the Meuse river. Journal of Hydrology, 353(1–2), 1–17. doi:10.1016/j.jhydrol.2008.01.001.

    Article  Google Scholar 

  • Wang, H., Wang, T., Zhang, B., Li, F., Toure, B., Omosa, I. B., et al. (2014). Water and wastewater treatment in Africa—current practices and challenges. CLEAN – Soil, Air, Water, 42(8), 1029–1035. doi:10.1002/clen.201300208.

    Article  CAS  Google Scholar 

  • Warner, N. R., Levy, J., Harpp, K., & Farruggia, F. (2008). Drinking water quality in Nepal’s Kathmandu Valley: a survey and assessment of selected controlling site characteristics. Hydrogeology Journal, 16(2), 321–334. doi:10.1007/s10040-007-0238-1.

    Article  CAS  Google Scholar 

  • Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., & Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 54(1), 101–123. doi:10.1623/hysj.54.1.101.

    Article  Google Scholar 

Download references

Acknowledgements

This work is a part of the United Nations Environment Programme (UNEP)/START PROVIA fellowship provided to the first author. The Institute of Environment for Sustainable Development (IESD) at Tongji University is acknowledged for hosting the first author for carrying out this research paper under the fellowship program. Department of Hydrology and Meteorology (DHM) and High Powered Committee for Integrated Development of Bagmati Civilization (HPCIDBC) provided monitoring data for the climate, hydrology, and water quality. Mohan B Chand, PhD student at the Hokkaido University in Japan, reviewed the manuscript and provided inputs. All the views are of authors and not attributed to the institutions listed above.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeeban Panthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panthi, J., Li, F., Wang, H. et al. Evaluating climatic and non-climatic stresses for declining surface water quality in Bagmati River of Nepal. Environ Monit Assess 189, 292 (2017). https://doi.org/10.1007/s10661-017-6000-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6000-9

Keywords

Navigation