Skip to main content

Advertisement

Log in

Detection of terrain indices related to soil salinity and mapping salt-affected soils using remote sensing and geostatistical techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Traditional surveying methods of soil properties over landscapes are dramatically cost and time-consuming. Thus, remote sensing is a proper choice for monitoring environmental problem. This research aims to study the effect of environmental factors on soil salinity and to map the spatial distribution of this salinity over the southern east part of Tunisia by means of remote sensing and geostatistical techniques. For this purpose, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer data to depict geomorphological parameters: elevation, slope, plan curvature (PLC), profile curvature (PRC), and aspect. Pearson correlation between these parameters and soil electrical conductivity (ECsoil) showed that mainly slope and elevation affect the concentration of salt in soil. Moreover, spectral analysis illustrated the high potential of short-wave infrared (SWIR) bands to identify saline soils. To map soil salinity in southern Tunisia, ordinary kriging (OK), minimum distance (MD) classification, and simple regression (SR) were used. The findings showed that ordinary kriging technique provides the most reliable performances to identify and classify saline soils over the study area with a root mean square error of 1.83 and mean error of 0.018.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abrol I.P., Yadav J.S.P., Massoud F.I. (1988). Salt-affected soils and their management. FAO Soils bulletins, 39, pp. 93

  • Acosta, J. A., Faz, A., Jansen, B., Kalbitz, K., & Martinez, S. (2011). Assessment of salinity status in intensively cultivated soils under semiarid climate, Murcia, SE Spain. Journal of Arid Environments, 75, 1056–1066.

    Article  Google Scholar 

  • Ajmi, B., Lazzez, M., Ben, R. R., & Shimi, N. (2012). Variations of soil salinity in an arid environment using underground watertable effects on salinzation of soils in irrigated perimeters in south Tunisia. International Journal of Geosciences, 3, 1040–1047.

    Article  Google Scholar 

  • Akramkhanov A. (2000). The spatial distribution of soil salinity: detection and prediction. Ecology and Development Series, 32, 33–41.

  • Akramkhanov, A., Martius, C., Park, S. J., & Hendrickx, J. M. H. (2011). Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma, 163, 55–62.

    Article  Google Scholar 

  • Allbed, A., & Kumar, L. (2013). Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. ARS, 2, 373–385.

    Article  Google Scholar 

  • Bannari, A., Guedon, A. M., El-Harti, A., Cherkaoui, F., & El-Ghmari, A. (2008). Characterization of slightly and moderately saline and sodic soils in irrigated agriculture land using simulated data of advanced land imaging (E0-1) sensor. Communications in Soil Science and Plant Analysis, 39, 2795–2281.

    Article  CAS  Google Scholar 

  • Boettinger, J. L., Howell, D. W., Moore, A. C., Hartemink A. E., & Kienast-Brown, S. (2010). Digital soil mapping. Progress in soil science, 2. doi:10.1007/978-90-481-8863-5.

  • Bouksila, F., Bahrib, A., Berndtssonc, R., Perssond, M., Rozemae, J., & Van der Zee, S. E. T. M. (2013). Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia. Environmental and Experimental Botany, 92, 176–185.

    Article  CAS  Google Scholar 

  • Chikhaoui, M., Bonn, F., Bokoye, A. I., & Merzouk, A. (2005). A spectral index for land degradation mapping using ASTER data: application to a semi-arid Mediterranean catchment. International Journal of Applied Earth Observation and Geoinformation, 7(2), 140–153.

    Article  Google Scholar 

  • Chkir, N., Trabelsi, R., Bahir, R., Hadj, A. M., Zouari, K., Chamchati, H., & Monteiro, J. (2008). Vulnérabilité des ressources en eaux des aquifères côtiers en zones semi-arides – Etude comparative entre les bassins d’Essaouira (Maroc) et de la Jeffara (Tunisie). Comunicações Geológicas, 95, 107–121.

    Google Scholar 

  • Douaoui, A. E. K., Hervé, N., & Walter, C. (2006). Detecting salinity hazards within a semiarid context by means of combining soil and remote sensing data. Geoderma, 134(1–2), 217–230.

    Article  Google Scholar 

  • El-Sayed, E. O. (2012). On-the-go digital soil mapping for precision agriculture. International Journal of Remote Sensing Applications, 2(3), 20–38.

    Google Scholar 

  • Farifteh, J., Van der Meer, F., & Carranza, E. J. M. (2007). Similarity measures for spectral discrimination of salt discrimination of salt-affected soils. International journal of Remote Sensing Reviews, 7, 241–259.

    Google Scholar 

  • Florinsky, I. V., & Kuryakova, G. A. (2000). Determination of grid size for digital terrain modelling in landscape investigations—exemplified by soil moisture distribution at a micro-scale. International Journal of Geographical Information Science, 14(8), 815–832.

    Article  Google Scholar 

  • Gao, J., & Liu, Y. (2010). Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. International Journal of Applied Earth Observation and Geoinformation, 12, 9–16.

    Article  Google Scholar 

  • Hachicha, M. (2007). Les sols salés et leurs mises en valeur en Tunisie. Sécheresse, 18(1), 45–50.

  • Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B., Li, R., & Flynn, L. (1997). The MODIS 2.1m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35, 1286–1298.

    Article  Google Scholar 

  • Lagacherie, P., McBratney, A. B., & Voltz, M. (2007). Digital soil mapping: an introductory perspective (1st ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Macaulay, S., & Muller, I. (2007). Predicting salinity impacts of land-use change: groundwater modelling with airborne electromagnetics and field data, SE Queensland, Australia. International Journal of Applied Earth Observation and Geoinformation, 9, 124–129.

    Article  Google Scholar 

  • Matinfar, H. R., Alavi Panah, S. K., Zand, F., & Khodaei, K. (2011). Detection of soil salinity changes and mapping land cover types based upon remotely sensed data. Arabian Journal of Geosciences. doi:10.1007/s12517-011-0384-8.

  • Mc Bratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.

    Article  Google Scholar 

  • Mtimet, A. (2001). Soils in Tunisia. In P. Zdruli, P. Steduto, C. Lacirigola, L. Montanarella (Eds.), Soil resources of southern and eastern Mediterranean countries. Options Méditerranéennes: Serie B Eetudes et Recherche. Bari: CIHEAM 34, 243–262.

  • Mougenot, B., Pouget, M., & Epema, G. F. (1993). Remote sensing of salt affected soils. Remote Sensing Reviews, 7(3–4), 241–259.

    Article  Google Scholar 

  • Mulder, V. L., de Bruin, S., Schaepman, M. E., & Mayr, T. R. (2011). The use of remote sensing in soil and terrain mapping—a review. Geoderma, 162, 1–19.

    Article  CAS  Google Scholar 

  • Richard, A. J. (2013). Remote sensing digital image analysis: an introduction. 5th edition. Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-642-30062-2.

  • Salama, R. B., Otto, C. J., & Fitzpatrick, R. W. (1999). Contributions of groundwater conditions to soil and water salinization. Hydrogeology Journal, 7, 46–64.

    Article  Google Scholar 

  • Schofield, R., Thomas, D. S. G., & Kirkby, M. J. (2001). Causal prosses of soil salinization in Tunisia, Spain and Hungary. Land Degradation and Developement, 12, 163–181.

    Article  Google Scholar 

  • Seelig, B. D., & Richardson, J. L. (1994). Sodic soil toposequence related to focused water flow. Soil Sci. Am. J, 48, 1350–1355.

    Google Scholar 

  • Triki, H., Bouaziz, M., Benzina, M., & Bouaziz, S. (2015). Modeling of soil salinity within a semi-arid region using spectral analysis. Arabian Journal of Geosciences, 8, 11175–11182.

    Article  Google Scholar 

  • Wulf, H., Mulder, T., Schaepman, M. E., Keller, A., & Jorg, P. (2015). Remote sensing of soils, 1–71. doi:10.13140/2.1.1098.0649.

  • Yahiaoui, I., Douaoui, A., Qiang, Z., & Ziane, A. (2015). Salinity prediction in the Lower Cheliff plain (Algeria) based on remote sensing and topographic feature analysis. Journal of Arid Land, 7(6), 794–805.

    Article  Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge the support of the DAAD project: German Academic Exchange Service. We are grateful to the US Geological Survey (USGS) for the provided Landsat 8 and ASTER data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hela Triki Fourati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triki Fourati, H., Bouaziz, M., Benzina, M. et al. Detection of terrain indices related to soil salinity and mapping salt-affected soils using remote sensing and geostatistical techniques. Environ Monit Assess 189, 177 (2017). https://doi.org/10.1007/s10661-017-5877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5877-7

Keywords

Navigation