Skip to main content

Advertisement

Log in

Assessing the effects of dam building on land degradation in central Iran with Landsat LST and LULC time series

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study aimed to analyze the impact of Zayandehrood Dam on desertification using the spatio-temporal dynamics of land use/land cover (LULC) and land surface temperature (LST) in an arid environment in central Iran from 1987 to 2014. The LULC and LST images were calculated from Landsat TM, ETM+, and OLI data, and their accuracies were assessed against reference data using error matrix and linear regression analysis. Results showed that salty and bare lands increased up to 57,302 ha, while agricultural lands declined substantially (28,275.58 ha) in the region. The changes in LULC classes resulted in dramatic variations in LST values. The average temperature showed a 5.03 °C increase, and the minimum temperature increased by 5.66 °C. LST had an increasing trend in bare lands (8.74 °C), poor rangelands (6.8 °C), agricultural lands (9.46 °C), salty lands (9.6 °C), and residential areas (3.18 °C) in this 27-year period. Rainfall and temperature trend analysis revealed that the main cause of these extreme changes in LULC and LST was largely attributed to the drying up of Zayandehrood River due to dam construction and allocating water mainly for industrial sectors. Results indicate that in addition to LULC changes, the spatio-temporal variations of LST can be used as an effective index in desertification assessment and monitoring in arid environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmadi, M., Lashkari, H., Keikhosravi, Q., & Azadi, M. (2015). Analysing the threshold temperature indices in detecting climate change in Great Khorasan. Geography, 45, 53–75.

    Google Scholar 

  • Amiraslani, F., & Dragovich, D. (2011). Combating desertification in Iran over the last 50 years: an overview of changing approaches. Journal of Environmental Management, 92(1), 1–13.

  • Amiri, R., Weng, A., Mohammadi, A., & Alavipanah, S. K. (2009). Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113, 2606–2617.

    Article  Google Scholar 

  • Amuti, T., & Luo, G. (2014). Analysis of land cover change and its driving forces in a desert oasis landscape of Xinjiang, northwest China. Solid Earth, 5(2), 1071–1085.

    Article  Google Scholar 

  • Artis, D. A., & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12, 313–329.

    Article  Google Scholar 

  • Asadi, H., Raeisvandi, A., Rabiei, B., & Ghadiri, H. (2012). Effect of land use and topography on soil properties and agronomic productivity on calcareous soils of a semiarid region, Iran. Land Degradation & Development, 23(5), 496–504.

    Article  Google Scholar 

  • Ataei, H., & Fanaei, R. (2014). Detecting the trend of daily mean temperature in Isfahan province in the last 50 years. Geography and Environmental Planning, 25, 105–118.

  • Badreldin, N., Frankl, A., & Goossens, R. (2014). Assessing the spatiotemporal dynamics of vegetation cover as an indicator of desertification in Egypt using multi-temporal MODIS satellite images. Arabian Journal of Geosciences, 7(11), 4461–4475.

    Article  Google Scholar 

  • Bannari, A., Morin, D., & Bonn, F. (1995). A review of vegetation indices. Remote Sensing Review, 13, 95–120.

    Article  Google Scholar 

  • Barbero-Sierra, C., Marques, M. J., Ruiz-Pérez, M., Escadafal, R., & Exbrayat, W. (2015). How is desertification research addressed in Spain? Land versus soil approaches. Land Degradation & Development, 26(5), 423–432.

    Article  Google Scholar 

  • Bastin, G. N., Pickup, G., Chewings, V. H., & Pearce, G. (1993). Land degradation assessment in central Australia using a grazing gradient method. Rangeland Journal, 15, 190–216.

    Article  Google Scholar 

  • Bauni, V., Schivo, F., Capmourteres, V., & Homberg, M. (2015). Ecosystem loss assessment following hydroelectric dam flooding: the case of Yacyretá, Argentina. Remote Sensing Applications: Society and Environment, 1, 50–60.

    Article  Google Scholar 

  • Becerril-Piña, R., Mastachi-Loza, C. A., González-Sosa, E., Díaz-Delgado, C., & Bâ, K. M. (2015). Assessing desertification risk in the semi-arid highlands of central Mexico. Journal of Arid Environments, 120, 4–13.

    Article  Google Scholar 

  • Behmanesh, J., & Azadetalatappeh, N. (2013). Analysing the changes of effective parameters on Orumiyeh’s climate. Journal of Geography and Planning, 19, 41–58.

    Google Scholar 

  • Berendse, F., Van Ruijven, J., Jongejans, E., & Keesstra, S. D. (2015). Loss of plant species diversity reduces soil erosion resistance of embankments that are crucial for the safety of human societies in low-lying areas. Ecosystems, 18, 881–888.

    Article  CAS  Google Scholar 

  • Bisaro, A., Kirk, M., Zdruli, P., & Zimmermann, W. (2014). Global drivers setting desertification research priorities: insights from a stakeholder consultation forum. Land Degradation & Development, 25(1), 5–16.

    Article  Google Scholar 

  • Cerdà, A. (1998). The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78(2), 321–330.

    Article  Google Scholar 

  • Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., et al. (2015). The use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency–high magnitude simulated rainfall events. Soil Research, (In press).

  • Cooper, A. R., Infante, D. M., Wehrly, K. E., Wang, L., & Brenden, T. O. (2015). Identifying indicators and quantifying large-scale effects of dams on fishes. Ecological Indicators, (In press).

  • Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Digital change detection methods in ecosystem monitoring: a review. International Journal of Remote Sensing, 25(9), 1565–1596.

    Article  Google Scholar 

  • Dash, P., Tsche, F. M. G., Olesen, F. S., & Fischer, H. (2002). Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. International Journal of Remote Sensing, 23(13), 2563–2594.

    Article  Google Scholar 

  • De Pina Tavares, J., Ferreira, A. J. D., Reis, E. A., Baptista, I., Amoros, R., Costa, L., et al. (2014). Appraising and selecting strategies to combat and mitigate desertification based on stakeholder knowledge and global best practices in Cape Verde archipelago. Land Degradation & Development, 25(1), 45–57.

    Article  Google Scholar 

  • Deenpajouh, Y., Niyazi, F., & Mofeed, H. (2013). Trend of climate parameters in Tabriz. Journal of Geography and Planning, 19, 145–169.

    Google Scholar 

  • Deering, D. W., Rouse, J. W., Hass, R. H., & Schell, J. A. (1975). Measuring forage production of grazing units from Landsat MSS data. In Proceedings of the 10th International Symposium on remote sensing of environment. 6–10 October, Ann Arbor, MI, pp. 1169–1178.

  • Diouf, A., & Lambin, E. (2001). Monitoring land-cover changes in semiarid regions: remote sensing data and field observations in the Ferlo, Senegal. Journal of Arid Environments, 48, 129–148.

    Article  Google Scholar 

  • Drake, N. A., & Vafeidis, A. (2004). A review of European Union funded research into the monitoring and mapping of Mediterranean desertification. Advances in Environmental Monitoring and Modelling, 1(4), 1–15.

    Google Scholar 

  • Dregne, H. E. (2002). Land degradation in the drylands. Arid Land Research and Management, 16, 99–139.

    Article  Google Scholar 

  • Ebrahimzadel, I. (2009). Analysis of the recent droughts and lack of water in Hamoon Lake on Sistan economic functions. Iran-Water Resources Research Journal, 5(2), 30–32.

    Google Scholar 

  • Escadafal, R., Barbero-Sierra, C., Exbrayat, W., Marques, M. J., Akhtar-Schuster, M., El Haddadi, A., et al. (2015). First appraisal of the current structure of research on land and soil degradation as evidenced by bibliometric analysis of publications on desertification. Land Degradation & Development, 26(5), 413–422.

    Article  Google Scholar 

  • Fan, H., He, D., & Wang, H. (2015). Environmental consequences of damming the mainstream Lancang-Mekong River: a review. Earth-Science Reviews, 146, 77–91.

    Article  Google Scholar 

  • Farajzadeh, M., & Rostamzadeh, H. (2007). Evaluating the effect of large dams on land use changes using remote sensing and GIS. Modares Human Sciences, 11(1), 47–66.

    Google Scholar 

  • Fearnside, P. (2016). Environmental and social impacts of hydroelectric dams in Brazilian Amazonia: implications for the aluminum industry. World Development, 77, 48–65.

    Article  Google Scholar 

  • Fearnside, P., & Pueyo, S. (2012). Greenhouse-gas emissions from tropical dams. Nat. Climate Change, 2, 382–384.

    Article  CAS  Google Scholar 

  • FRW (2005). Land cover map of Iran, Final Report, winter 2005, The Forest, Rangeland and Watershed Management Organization, Tehran, Iran.

  • Gandomkar, A., & Fouladi, K. (2012). The necessity of optimized management on surface water sources of Zayanderood basin. World Academy of Science, Engineering and Technology, 6(5), 468–472.

    Google Scholar 

  • Ghaffari, G., Keesstra, S., Ghodousi, J., & Ahmadi, H. (2010). SWAT-simulated hydrological impact of land-use change in the Zanjanrood Basin, Northwest Iran. Hydrological Processes, 24(7), 892–903.

    Article  Google Scholar 

  • Ghobadi, Y., Pradhan, B., Shafri, H., & Kabiri, K. (2015). Assessment of spatial relationship between land surface temperature and landuse/cover retrieval from multi-temporal remote sensing data in South Karkheh Sub-basin, Iran. Arabian Journal of Geosciences, 8(1), 525–537.

    Article  Google Scholar 

  • Gonzalez, P. (2001). Desertification and a shift of forest species in the West African Sahel. Climate Research, 17, 217–228.

    Article  CAS  Google Scholar 

  • Grunblatt, J., Ottichilo, W. K., & Sinange, R. K. (1992). A GIS approach to desertification assessment and mapping. Journal of Arid Environments, 23, 81–102.

    Google Scholar 

  • Higuchi, A., Hiyama, T., Fukuta, Y., Suzuki, R., & Fukushima, Y. (2007). The behaviour of a surface temperature/vegetation index (TVX) matrix derived from 10-day composite AVHRR images over monsoon Asia. Hydrological Processes, 21, 1157–1166.

    Article  Google Scholar 

  • Huete, A. R., Jackson, R. D., & Post, D. F. (1985). Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment, 17, 37–53.

    Article  Google Scholar 

  • Indoitu, R., Kozhoridze, G., Batyrbaeva, M., Vitkovskaya, I., Orlovsky, N., Blumberg, D., et al. (2015). Dust emission and environmental changes in the dried bottom of the Aral Sea. Aeolian Research, 17, 101–115.

    Article  Google Scholar 

  • Jafari, R., & Bakhshandehmehr, L. (2013). Quantitative mapping and assessment of environmentally sensitive areas to desertification in central iran. Land Degradation and Development. doi:10.1002/ldr.2227.

    Google Scholar 

  • Jury, M. R., Weeks, S., & Godwe, M. P. (1997). Satellite-observed vegetation as an indicator of climate variability over southern Africa. South African Journal of Science, 93, 34–38.

    Google Scholar 

  • Karimkoshteh, M. H., & Haghiri, M. (2004). Water-reform strategies in Iran’s agricultural sector. Perspectives on Global Development and Technology, 3(3), 327–346.

    Article  Google Scholar 

  • Kellogg, C. H., & Zhou, X. (2014). Impact of the construction of a large dam on riparian vegetation cover at different elevation zones as observed from remotely sensed data. International Journal of Applied Earth Observation and Geoinformation, 32, 19–34.

    Article  Google Scholar 

  • Khodagholi, M., Sabouhi, R., & Skandari, Z. (2014). Analysing past and future drought in Isfahan province. Journal of Water and Soil Sciences, 67, 367–379.

    Google Scholar 

  • Kiage, L. M., Liu, K. B., Walker, N. D., Lam, N., & Huh, O. K. (2007). Recent land cover/use change associated with land degradation in the Lake Baringo catchment, Kenya, East Africa: evidence from Landsat TM and ETM+. International Journal of Remote Sensing, 28(19), 4285–4393.

    Article  Google Scholar 

  • König, H. J., Zhen, L., Helming, K., Uthes, S., Yang, L., Cao, X., et al. (2014). Assessing the impact of the sloping land conversion programme (SLCP) on rural sustainability in Guyuan, Western China. Land Degradation & Development, 25(4), 385–396.

    Article  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.

    Article  CAS  Google Scholar 

  • Le Houérou, H. N. (Ed.). (1992). An overview of vegetation and land degradation in world arid lands (Vol. pp. 127e163). Texas: Texas Tech University.

  • Lieskovský, J., & Kenderessy, P. (2014). Modelling the effects of vegetation cover and different tillage practices on soil erosion in vineyards: a case study in Vrable (Slovakia) using WATEM/SEDEM. Land Degradation & Development, 25(3), 288–296.

    Article  Google Scholar 

  • Lillesand, T. M., & Kiefer, R. W. (2000). Remote sensing and image interpretation. New York: Wiley.

    Google Scholar 

  • Liu, L., & Zhang, Y. (2011). Urban heat island analysis using the Landsat TM data and ASTER data: a case study in Hong Kong. Remote Sensing, 3, 1535–1552.

    Article  Google Scholar 

  • Liu, Z., Yao, Z., Huang, H., Wu, S., & Liu, G. (2014). Land use and climate changes and their impacts on runoff in the Yarlung Zangbo Basin, China. Land Degradation & Development, 25(3), 203–215.

    Article  Google Scholar 

  • Lyon, J. G., & Greene, R. G. (1992). Use of aerial photographs to measure the historical areal extent of Lake Erie coastal wetlands. Photogrammetric Engineering and Remote Sensing, 58(9), 1355–1360.

    Google Scholar 

  • Mas, J. F. (1999). Monitoring land-cover changes: a comparison of change detection techniques. International Journal of Remote Sensing, 20(1), 139–152.

    Article  Google Scholar 

  • Matkan, A. H., Shakiba, A. R., & Hosseiniasl, A. (2010). Analysing the effect of Taleghan Dam on land cover changes. Applied Research Journal of Geographic sciences, 116(19), 45–64.

    Google Scholar 

  • Mekonnen, M., Keesstra, S. D., Stroosnijder, L., Baartman, J., & Maroulis, J. (2015). Soil conservation through sediment trapping: a review. Land Degradation & Development, 26, 544–556.

    Article  Google Scholar 

  • Miao, L., Moore, J. C., Zeng, F., Lei, J., Ding, J., He, B., et al. (2015). Footprint of research in desertification management in China. Land Degradation & Development, 26, 450–457.

    Article  Google Scholar 

  • Micklin, F. (2007). The Aral Sea disaster. Annual Review of Earth and Planetary Sciences, 35, 47–72.

    Article  CAS  Google Scholar 

  • Modarres, R., Paulo, V., & Silvab, R. (2007). Rainfall trends in arid and semi-arid regions of Iran. Journal of Arid Environments, 70, 344–355.

    Article  Google Scholar 

  • Molle, F., & Mamanpoush, A. R. (2002). The 1999–2001 drought in the Zayandeh Rud basin and its impact on water allocation and agriculture. Report, Agricultural Research and Education Organization, Isfahan, Iran.

  • Momeni, M., & Saradjian, M. (2008). A weighted least squares approach for estimation of land surface temperature using constraint equations. Photogrammetric Engineering and Remote Sensing, 74(5), 637–646.

    Article  Google Scholar 

  • Moreno-Ramón, H., Quizembe, S. J., & Ibáñez-Asensio, S. (2014). Coffee husk mulch on soil erosion and runoff: experiences under rainfall simulation experiment. Solid Earth, 5(2), 851–862. doi:10.5194/se-5-851-2014.

    Article  Google Scholar 

  • Mundia, C. N., & Aniya, M. (2006). Dynamics of landuse/cover changes and degradation of Nairobi City, Kenya. Land Degradation and Development, 17(1), 97–108.

    Article  Google Scholar 

  • Myneni, R., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in northern high latitudes from 1981 to 1991. Nature, 386, 698–702.

    Article  CAS  Google Scholar 

  • Najafi, A., & Vatanfada, J. (2011). Environmental challenges in trans-boundary waters, case study: Hamoon Hirmand Wetland (Iran and Afghanistan). International Journal of Water Resources and Arid Environments, 1(1), 16–24.

    Google Scholar 

  • NDWMC (2015). I.R.of IRAN Meteorological Organization. National Drought Warning and Monitoring Centre, Drought Mapping at National Scale. http://ndwmc.irimo.ir/far/.Accessed. Accessed 25 Apr 2015.

  • Nicholson, S. E., Tucker, C. J., & Ba, M. B. (1998). Desertification, drought, and surface vegetation: an example from the West African Sahel. Bulletin of the American Meteorological Society, 79, 1–15.

    Article  Google Scholar 

  • Nourian, M. (2014). Detection of drought effects on land cover changes using meteorological and remote sensing data in the west of Isfahan province. Dissertation, Isfahan University of Technology.

  • Palmeirim, A. F., Peres, C. A., & Rosas, F. C. W. (2014). Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biological Conservation, 174, 30–38.

    Article  Google Scholar 

  • Plesník, J. (2011). A concept of a degraded ecosystem in theory and practice—a review, The European Topic Centre on Biological Diversity (ETC/BD).

  • Price, J. C. (1990). The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resources, 16, 787–795.

    Article  Google Scholar 

  • Prince, S. D. (1991). Satellite remote sensing of primary production: comparison of results for Sahelian grasslands 1981-1988. International Journal of Remote Sensing, 12, 1301–1311.

    Article  Google Scholar 

  • Prince, S. D., & Justice, C. O. (1991). Coarse resolution remote sensing in the Sahelian environment. International Journal of Remote Sensing, 12, 1133–1421.

    Article  Google Scholar 

  • Prince, S. D., Brown de Colstoun, E., & Kravitz, L. (1998). Evidence from rain use efficiencies does not support extensive Sahelian desertification. Global Change Biology, 4, 359–374.

    Article  Google Scholar 

  • Rautela, P., Rakshit, R., Rajesh, V. K. J., Gupta, K., & Munshi, A. (2002). GIS and remote sensing-based study of the reservoir-induced land-use/land-cover changes in the catchment of Tehri dam in Garhwal Himalaya, India. Current Science Journal, 83(3), 308–311.

    Google Scholar 

  • Ravi, S., Breshears, D. D., Huxman, T. E., & D'Odorico, P. (2010). Land degradation in drylands: interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology, 116, 236–245.

    Article  Google Scholar 

  • Requier Desjardins, M., Adhikari, B., & Sperlich, S. (2011). Some notes on the economic assessment of land degradation. Land Degradation & Development, 22, 285–298.

    Article  Google Scholar 

  • Sabzalipour, A. A., Seif, Z., & Qiyami, F. (2013). Temperature trend analysis in arid and semi-arid lands of Iran. Geography and Development Iranian Journal, 30, 117–138.

    Google Scholar 

  • Sadeghi, S. H. R., Gholami, L., Sharifi, E., Khaledi Darvishan, A., & Homaee, M. (2015). Scale effect on runoff and soil loss control using rice straw mulch under laboratory conditions. Solid Earth, 6(1), 1–8.

    Article  Google Scholar 

  • Salazar, A., Baldi, G., Hirota, M., Syktus, J., & McAlpine, C. (2015). Land use and land cover change impacts on the regional climate of non-Amazonian South America: a review. Global and Planetary Change, 128, 103–119.

    Article  Google Scholar 

  • Serafini, V. V. (1987). Estimation of the evapotranspiration using surface and satellite data. International Journal of Remote Sensing, 8, 1547–1562.

    Article  Google Scholar 

  • Singh, A. (1989). Review article: digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003.

    Article  Google Scholar 

  • Smith, M. O., Ustin, S. L., Adams, J. B., & Gillespie, A. R. (1990). Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sensing of Environment, 31, 1–26.

    Article  Google Scholar 

  • Torres, L., Abraham, E. M., Rubio, C., Barbero-Sierra, C., & Ruiz-Pérez, M. (2015). Desertification research in Argentina. Land Degradation & Development, 26(5), 433–440.

    Article  Google Scholar 

  • Torres-Vera, M. A., Prol-Ledesma, R. M., & Garcia-Lopez, D. (2009). Three decades of land use variations in Mexico City. International Journal of Remote Sensing, 30(1), 117–138.

    Article  Google Scholar 

  • Tucker, C. J., Dregne, H. E., & Newcomb, W. W. (1991a). Expansion and contraction of the Sahara desert from 1980 to 1990. Science, 253, 299–301.

    Article  CAS  Google Scholar 

  • Tucker, C. J., Newcomb, W. W., Los, S. O., & Prince, S. D. (1991b). Mean and inter-annual variation of growing-season normalized difference vegetation index for the Sahel 1981-1989. International Journal of Remote Sensing, 12, 1133–1135.

    Article  Google Scholar 

  • USGS (2013). United States Geological Survey. Using the USGS Landsat 8 Product. http://landsat.usgs.gov/Landsat8_Using_Product.php. Accessed 25 Apr 2015.

  • Vandandorj, S., Gantsetseg, B., & Boldgiv, B. (2015). Spatial and temporal variability in vegetation cover of Mongolia and its implications. Journal of Arid Land, 7(4).

  • Vieira, R. M. S. P., Tomasella, J., Alvalá, R. C. S., Sestini, M. F., Affonso, A. G., Rodriguez, D. A., et al. (2015). Identifying areas susceptible to desertification in the Brazilian northeast. Solid Earth, 6(1), 347–360.

    Article  Google Scholar 

  • Wijesundara, C. J., & Dayawansa, N. D. K. (2011). Construction of large dams and their impact on cultural landscape: a study in Victoria reservoir and the surrounding area. Tropical Agricultural Research, 22(2), 211–219.

    Article  Google Scholar 

  • WRM (2015). Iran Water Resources Management Company (WRM), Statistices on Dam Projects. http://daminfo.wrm.ir/fa/dam/stats. Accessed 31 May 2015.

  • Xiao, H., & Weng, Q. (2007). The impact of land use and land cover changes on land surface temperature in a karst area of China. Journal of Environmental Management, 85(1), 245–257.

    Article  Google Scholar 

  • Xie, L. W., Zhong, J., Chen, F. F., Cao, F. X., Li, J. J., & Wu, L. C. (2015). Evaluation of soil fertility in the succession of karst rocky desertification using principal component analysis. Solid Earth, 6(2), 515–524.

    Article  Google Scholar 

  • Zafarnejad, F. (2009). The contribution of dams to Iran’s desertification. International Journal of Environmental Studies, 66(3), 327–341.

    Article  Google Scholar 

  • Zhang, W., He, Y., Cai, J., & Li, Z. (2010). GIS-based analysis on the relationship between land use/cover and land surface temperature in Zhejiang Province. Chinese Journal of Agrometeorology, 10, 295–299.

    Google Scholar 

  • Zhang, J., Niu, J. M., Bao, T., Buyantuyev, A., Zhang, Q., Dong, J. J., et al. (2014). Human induced dryland degradation in Ordos Plateau, China, revealed by multilevel statistical modeling of normalized difference vegetation index and rainfall time-series. Journal of Arid Land, 6(2), 219–229.

    Article  Google Scholar 

  • Zhao, G., Mu, X., Wen, Z., Wang, F., & Gao, P. (2013). Soil erosion, conservation, and eco-environment changes in the loess plateau of China. Land Degradation & Development, 24, 499–510.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, R., Hasheminasab, S. Assessing the effects of dam building on land degradation in central Iran with Landsat LST and LULC time series. Environ Monit Assess 189, 74 (2017). https://doi.org/10.1007/s10661-017-5792-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5792-y

Keywords

Navigation