Skip to main content
Log in

Phytoplankton dynamics of a subtropical reservoir controlled by the complex interplay among hydrological, abiotic, and biotic variables

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study was conducted to identify the key factors related to the spatiotemporal variations in phytoplankton abundance in a subtropical reservoir from 2006 to 2010 and to assist in developing strategies for water quality management. Dynamic factor analysis (DFA), a dimension-reduction technique, was used to identify interactions between explanatory variables (i.e., environmental variables) and abundance (biovolume) of predominant phytoplankton classes. The optimal DFA model significantly described the dynamic changes in abundances of predominant phytoplankton groups (including dinoflagellates, diatoms, and green algae) at five monitoring sites. Water temperature, electrical conductivity, water level, nutrients (total phosphorus, NO3-N, and NH3-N), macro-zooplankton, and zooplankton were the key factors affecting the dynamics of aforementioned phytoplankton. Therefore, transformations of nutrients and reactions between water quality variables and aforementioned processes altered by hydrological conditions may also control the abundance dynamics of phytoplankton, which may represent common trends in the DFA model. The meandering shape of Shihmen Reservoir and its surrounding rivers caused a complex interplay between hydrological conditions and abiotic and biotic variables, resulting in phytoplankton abundance that could not be estimated using certain variables. Additional water quality and hydrological variables at surrounding rivers and monitoring plans should be executed a few days before and after reservoir operations and heavy storm, which would assist in developing site-specific preventive strategies to control phytoplankton abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrantes, N., Anthunes, S. C., Pereira, M. J., & Gonçalves, F. (2006). Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecologica-international Journal of Ecology, 29, 54–64.

    Article  Google Scholar 

  • Adon, M. P., Ouattara, A., & Gourène, G. (2011). Seasonal variation in the diversity and abundance of phytoplankton in a small African tropical reservoir. African Journal of Microbiology Research, 5(18), 2616–2626.

    Article  CAS  Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  • Alam, M. G., Jahan, N., Thalib, L., Wei, B., & Maekawa, T. (2001). Effects of environmental factors on the seasonally change of phytoplankton populations in a closed freshwater pond. Environment International, 27, 363–371.

    Article  CAS  Google Scholar 

  • APHA. (2000). Microbiological examination, part 9000, in Clesceri, L. S., Greenberg, A. E. & Eaton, A. D., (Eds.): Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC.

  • Becker, V., Caputo, L., Ordóñez, J., Marcé, R., Armengol, J., Crossetti, L. O., & Huszar, V. L. (2010). Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Research, 44(11), 3345–3354.

    Article  CAS  Google Scholar 

  • Burford, M. A., Johnson, S. A., Cook, A. J., Packer, T. V., Taylor, B. M., & Townsley, E. R. (2007). Correlations between watershed and reservoir characteristics, and algal blooms in subtropical reservoirs. Water Research, 41, 4105–4114.

    Article  CAS  Google Scholar 

  • Burger, D. F., Hamilton, D. P., & Pilditch, C. A. (2008). Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecological Modelling, 211, 411–423.

  • Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography: Methods, 22(2), 361–369.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., Cole, J. J., Kitchell, J. F., & Pace, M. L. (1998). Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes. Limnology and Oceanography: Methods, 43(1), 73–80.

    Article  CAS  Google Scholar 

  • Chen, B., Liu, H., Landry, A. M., Dai, M., Huang, B., & Sun, J. (2009). Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea. Limnology and Oceanography: Methods, 54, 1084–1097.

    Article  CAS  Google Scholar 

  • Chien, Y. C., Wu, S. C., & Wu, J. T. (2009). Identification of physical parameters controlling the dominance of algal species in a subtropical reservoir. Water Science and Technology, 60(7), 1779–1786.

    Article  CAS  Google Scholar 

  • Chou, W. S., Lee, T. C., Lin, J. Y., & Yu, S. L. (2007). Phosphorus load reduction goals for Feitsui Reservoir watershed, Taiwan. Environmental Monitoring and Assessment, 131, 395–408.

    Article  CAS  Google Scholar 

  • Crossetti, L. O., & Bicudo, C. E. M. (2008). Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia, 610, 161–173.

    Article  CAS  Google Scholar 

  • Dauchez, S., Legendre, L., Fortier, L., & Levasseur, M. (1996). Nitrate uptake by size-fractionated phytoplankton on the Scotian Shelf (Northwest Atlantic): spatial and temporal variability. Journal of Plankton Research, 18, 577–595.

    Article  CAS  Google Scholar 

  • Desbarats, A. J. (2001). Geostatistical modelling of regionalized grainsize distributions using min/max autocorrelation factors. In P. Monestiez, D. Allard, & R. Froidevaux (Eds.), Geostatistics for environmental applications III. Amsterdam: Kluwer Academic Publisher.

    Google Scholar 

  • Desbarats, A. J., & Dimitrakopoulos, R. (2000). Geostatistical simulation of regionalized pore-size distributions using min/max autocorrelation factors. Mathematical Geology, 32, 919–942.

    Article  Google Scholar 

  • Dirnberger, J. M., & Threlkeld, S. T. (1986). Advective control of reservoir zooplankton abundance and dipersion. Freshwater Biology, 16, 387–396.

    Article  Google Scholar 

  • Erzini, K. (2005). Trends in NE Atlantic landings environmental landings. Fisheries Oceanography, 14(3), 195–209.

    Article  Google Scholar 

  • Flores, L. N., & Barone, R. (1994). Relationship between trophic state and plankton community structure in 21 Sicilian dam reservoirs. Hydrobiologia, 275, 197–205.

    Article  Google Scholar 

  • Froneman, P. W., Perissinotto, R., & McQuaid, C. D. (1996). Dynamics of microplankton communities at the ice-edge zone of the Lazarev Sea during a summer drogue study. Journal of Plankton Research, 18, 1455–1470.

    Article  Google Scholar 

  • García de Emiliani, M. O. (1997). Effects of water level fluctuations on phytoplankton in a river-floodplain lake system (Paraná River, Argentina). Hydrobiologia, 357(1), 1–15.

    Article  Google Scholar 

  • Gordon, N., Adams, J. B., & Garcia-Rodriguez, F. (2011). Water quality status and phytoplankton composition in Soetendalvlei, Voëlvlei and Waskraalsvlei, three shallow wetlands on the Agulhas Plain, South Africa. African Journal of Aquatic Science, 36(1), 19–33.

    Article  Google Scholar 

  • Harris, G. P. (1986). Phytoplankton ecology: structure, function and fluctuation (1st ed.). London: Chapman & Hall.

    Book  Google Scholar 

  • Hartnett, M., & Nash, S. (2004). Modelling nutrient and chlorophyll a dynamics in an Irish brackish water body. Environmental Modelling & Software, 19, 47–56.

    Article  Google Scholar 

  • Henson, S. A. (2007). Water column stability and spring bloom dynamics in the Gulf of Alaska. Journal of Marine Research, 65, 715–736.

    Article  Google Scholar 

  • Kaplan, D., Muñoz-Carpena, R., & Ritter, A. (2010). Untangling complex shallow groundwater dynamics in the floodplain wetlands of a southeastern U.S. coastal river. Water Resources Research, 46, W08528. doi:10.1029/2009WR009038.

    Article  Google Scholar 

  • Karlson, K., Rosenberg, R., & Bonsdorff, E. (2002). Temporal and spatial large scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters: a review. Oceanography and Marine Biology, 40, 427–489.

    Google Scholar 

  • Kuo, Y. M., & Chang, F. J. (2010). Dynamic factor analysis for estimating ground water arsenic trends. Journal of Environmental Quality, 39(1), 176–184.

    Article  CAS  Google Scholar 

  • Kuo, Y. M., & Lin, H. J. (2010). Dynamic factor analysis of long-term growth trends of the intertidal seagrass Thalassia hemprichii in southern Taiwan. Estuarine, Coastal and Shelf Science, 86(2), 225–236.

    Article  CAS  Google Scholar 

  • Kuo, J. T., & Thomann, R. V. (1983). Phytoplankton modeling in the embayment of lakes. Journal of Environmental Engineering-ASCE, 119(6), 1311–1332.

    Article  Google Scholar 

  • Kuo, Y. M., Chu, H. J., Pan, T. Y., & Yu, H. L. (2011). Investigating common trends of annual maximum rainfalls during heavy rainfall events in southern Taiwan. Journal of Hydrology, 409, 749–758.

    Article  Google Scholar 

  • Kuo, Y. M., Jang, C. S., Yu, H. L., Chen, S. C., & Chu, H. J. (2013). Influences of near shore groundwater and river hydrochemical variables on water quality of the Kaoping River Estuary. Journal of Hydrology, 486(4), 39–47.

    Article  CAS  Google Scholar 

  • Lee, S., Lee, S., Kim, S. H., Park, H., Park, S., & Yum, K. (2012). Examination of critical factors related to summer chlorophyll a concentration in the Sueo Dam Reservoir, Republic of Korea. Environmental Engineering Science, 29(6), 502–510.

    Article  CAS  Google Scholar 

  • Leonard, J. A., & Paerl, H. W. (2005). Zooplankton community structure, micro-zooplankton grazing impact, and seston energy content in the St. Johns River system, Florida as influenced by the toxic cyanobacteria Cylindrospermopsis raciborskii. Hydrobiologia, 537(1–3), 89–97.

    Article  Google Scholar 

  • Ligas, A., Sartor, P., & Colloca, F. (2011). Trends in population dynamics and fishery of Parapenaeus longirostris and Nephrops norvegicus in the Tyrrhenian Sea (NW Mediterranean): the relative importance of fishery and environmental variables. Marine Ecology, 32, 25–35.

    Article  Google Scholar 

  • Liu, W. C., Chen, H. H., Hsieh, W. H., & Chang, C. H. (2006). Linking watershed and eutrophication modelling for the Shihmen Reservoir, Taiwan. Water Science and Technology, 54, 39–46.

    Article  CAS  Google Scholar 

  • Liu, L., Liu, D., Johnson, D. M., Yi, Z., & Huang, Y. (2012). Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: implications for management. Water Research, 46(7), 2121–2130.

    Article  CAS  Google Scholar 

  • Lucas, L. V., Thompson, J. K., & Brown, L. R. (2009). Why are diverse relationships observed between phytoplankton biomass and transport time? Limnology and Oceanography, 54(1), 381–390.

    Article  Google Scholar 

  • Mazumder, A. (1994). Phosphorus-chlorophyll relationship under contrasting herbivory and thermal stratification: predictions and patterns. Canadian Journal of Fisheries and Aquatic Sciences, 51, 390–400.

    Article  CAS  Google Scholar 

  • Mioni, C. E., Kudela, R. M., & Zehr, J. (2014). Understanding the environmental factors driving potentially harmful cyanobacteria growth and their toxins in Mt View Sanitary District marshes (McNabney, Moorhen marshes). Mt View Sanitary District (Grant#: 20130453), University of California, Santa Cruz-Institute of Marine Sciences.

  • Mitra, A., & Flynn, K. J. (2006). Promotion of harmful algal blooms by zooplankton predatory activity. Biology Letters, 2(2), 194–197.

    Article  Google Scholar 

  • Moline, M. A., & Prezelin, B. B. (1996). Long-term monitoring and analyses of physical factors regulating variability in coastal Antarctic phytoplankton biomass, in situ productivity and taxonomic composition over subseasonal, seasonal and interannual time scales. Marine Ecology Progress Series, 145, 143–160.

    Article  Google Scholar 

  • Mortensen, E., Jeppesen, E., Søndergaard, M., & Nielsen, L. K. (eds) (2010). Nutrient dynamics and biological structure in shallow freshwater and brackish lakes (developments in hydrobiology). Springer, 507 pp.

  • Muñoz-Carpena, R., Ritter, A., & Li, Y. C. (2005). Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park. Journal of Contaminant Hydrology, 80(1–2), 49–70.

    Article  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part 1—a discussion of principles. Journal of Hydrology, 10, 282–290.

    Article  Google Scholar 

  • Nejstgaard, J. C., Gismervik, I., & Solberg, P. T. (1997). Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series, 147, 197–217.

    Article  Google Scholar 

  • Neuer, S., & Cowles, T. J. (1994). Protist herbivory in the Oregon upwelling system. Marine Ecology Progress Series, 113, 147–162.

    Article  Google Scholar 

  • Nilsson, H., & Rosenberg, R. (1994). Hypoxic response of two marine benthic communities. Marine Ecology Progress Series, 115, 209–217.

    Article  Google Scholar 

  • Olson, M. B., Evelyn, J. L., William, P. C., & Vera, L. T. (2008). Intrinsic growth and microzooplankton grazing on toxigenic Pseudo-nitzschia spp. diatoms from the coastal northeast Pacific. Limnology and Oceanography, 53(4), 1352–1368.

    Article  Google Scholar 

  • Paerl, H. W., & Huisman, J. (2008). Blooms like it hot. Science, 320, 57–58.

    Article  CAS  Google Scholar 

  • Parsons, T. R., Le Brasseur, R. J., & Fulton, J. D. (1967). Some observations on the dependence of zooplankton grazing on the cell size and concentration of phytoplankton blooms. Journal of the Oceanographic Society of Japan, 23, 10–17.

    Google Scholar 

  • Peterson, H. G., Healey, F. P., & Wagemann, R. (1984). Metal toxicity to algae: a highly pH dependent phenomenon. Canadian Journal of Fisheries and Aquatic Sciences, 41, 974–979.

    Article  CAS  Google Scholar 

  • Reynolds, C. S. (1988). The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verhandlungen des Internationalen Verein Limnologie, 23, 683–691.

    Google Scholar 

  • Ritter, A., & Muñoz-Carpena, R. (2006). Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park. Journal of Hydrology, 317, 340–354.

    Article  Google Scholar 

  • Ritter, A., Muñoz-Carpena, R., Bosch, D. D., Schaffer, B., & Potter, T. L. (2007). Agricultural land use and hydrology affect variability of shallow groundwater nitrate concentration in South Florida. Hydrological Processes, 21(18), 2464–2473.

    Article  CAS  Google Scholar 

  • Ritter, A., Regalado, C. M., & Muñoz-Carpena, R. (2009). Temporal common trends of topsoil water dynamics in a humid subtropical forest watershed. Vadose Zone Hydrology, 8, 37–449.

    Google Scholar 

  • Sai Elangovan, S., Arun Kumar, M., Karthik, R., Jayabarathi, R., & Padmavati, G. (2012). Abundance, species composition of microzooplankton from the coastal waters of Port Blair, South Andaman Island. Aquatic Biosystems, 8(1), 20. doi:10.1186/2046-9063-8-20.

    Article  CAS  Google Scholar 

  • Sherr, E. B., Sherr, B. F., & Ross, C. (2008). Microzooplankton grazing impact in the Bering Sea during spring sea ice conditions. Aquatic Microbial Ecology, 50, 157–167.

    Article  Google Scholar 

  • Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environmental Science and Pollution Research, 10, 126–139.

    Article  CAS  Google Scholar 

  • Sterner, R. W., & Hessen, D.O. (2003). Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematics, 25(1), 1-29.

  • Strom, S. L., Erin, L., Macri, M., & Brady, O. (2007). Microzooplankton grazing in the coastal Gulf of Alaska: variations in top-down control of phytoplankton. Limnology & Oceanography, 52(4), 1480–1494.

    Article  Google Scholar 

  • Sulis, A., Buscarinu, P., Soru, O., & Sechi, G. M. (2014). Trophic state and toxic cyanobacteria density in optimization modeling of multi-reservoir water resource systems. Toxins, 6(4), 1366–1384.

    Article  CAS  Google Scholar 

  • Sun, J., & Liu, D. (2003). Geometric models for calculating cell biovolume and surface area of phytoplankton. Journal of Plankton Research, 25, 1331–1346.

    Article  Google Scholar 

  • Thornton, K. W., Kimmel, B. L., & Payne, F. E. (1990). Reservoir limnology: ecological perspectives (pp. 43–70). New York, NY: John Wiley and Sons.

    Google Scholar 

  • Threlkeld, S.T. (1987). Daphnia population fluctuations: patterns and mechanisms. In: Peters RH, de Bernardi R (eds), Daphnia. Mem. Ist. Ital. Idrobiol. 45, 367–388.

  • Utermöhl, H. (1958). Zur vervollkommung der quantitativen phytoplankton methodik (Towards a perfection of quantitative phytoplankton methodology). Mitteilungen der internationale vereinigung für theoretische und angewandte. Limnologie, 9, 1–38.

    Google Scholar 

  • Verity, P. G., Wassmann, P., Frischer, M. E., Howard-Jones, M. H., & Allen, A. E. (2002). Grazing of phytoplankton by microzooplankton in the Barents Sea during early summer. Journal of Marine Systems, 38, 109–123.

    Article  Google Scholar 

  • Water Resource Agency (2008). Water quality monitoring, ecological investigation of aquatic environment and nonpoint sources pollution research for the Shihmen Reservoir. Northern Region Water Resources Office, Water Resources Agency, Taiwan.

  • Wu, R. S., Liu, W. C., & Hsieh, W. H. (2004). Eutrophication modeling in Shihmen Reservoir, Taiwan. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 39(6), 1455–1477.

    Article  Google Scholar 

  • Zuur, A. F., & Pierce, G. J. (2004). Common trends in Northeast Atlantic squid time series. Journal of Sea Research, 52, 57–72.

    Article  Google Scholar 

  • Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R., & Beukema, J. J. (2003). Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics, 14, 665–685.

    Article  Google Scholar 

  • Zuur, A. F., Ieno, E. N., & Smith, G. M. (2007). Analysing ecological data. Berlin: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of the National Science Council, Taiwan (NSC 101-2313-B-451-003), the Natural Science Foundation of Hubei Province of China (2015CFA050), and Laboratory of Basin Hydrology and Wetland Eco-restoration of China University of Geosciences, Wuhan (BHWER201401(A)). The authors want to thank Northern Region Water Resources Office, Water Resources Agency, Taiwan for providing the monitoring data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ming Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, YM., Wu, JT. Phytoplankton dynamics of a subtropical reservoir controlled by the complex interplay among hydrological, abiotic, and biotic variables. Environ Monit Assess 188, 689 (2016). https://doi.org/10.1007/s10661-016-5713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5713-5

Keywords

Navigation