Skip to main content

Advertisement

Log in

Methodological approach for the collection and simultaneous estimation of greenhouse gases emission from aquaculture ponds

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Global warming/climate change is the greatest environmental threat of our time. Rapidly developing aquaculture sector is an anthropogenic activity, the contribution of which to global warming is little understood, and estimation of greenhouse gases (GHGs) emission from the aquaculture ponds is a key practice in predicting the impact of aquaculture on global warming. A comprehensive methodology was developed for sampling and simultaneous analysis of GHGs, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from the aquaculture ponds. The GHG fluxes were collected using cylindrical acrylic chamber, air pump, and tedlar bags. A cylindrical acrylic floating chamber was fabricated to collect the GHGs emanating from the surface of aquaculture ponds. The sampling methodology was standardized and in-house method validation was established by achieving linearity, accuracy, precision, and specificity. GHGs flux was found to be stable at 10 ± 2 °C of storage for 3 days. The developed methodology was used to quantify GHGs in the Pacific white shrimp Penaeus vannamei and black tiger shrimp Penaeus monodon culture ponds for a period of 4 months. The rate of emission of carbon dioxide was found to be much greater when compared to other two GHGs. Average GHGs emission in gha−1 day−1 during the culture was comparatively high in P.vannamei culture ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adhya, T. K., Rath, A. K., Gupta, P. K., Rao, V. R., Das, S. N., Parida, K., Parashar, D. C., & Sethunathan, N. (1994). Methane emission from flooded rice paddy fields under irrigated conditions. Biol. Fert. Soils, 18, 245–248.

    Article  Google Scholar 

  • Anonymous (2015).Deccan Chronicle, Kochi edition, July 3, 2015, p. 13.

  • Avnimelech, Y., & Ritvo, G. (2003). Shrimp and fish pond soils: processes and management. Aquaculture, 220, 549–567.

    Article  Google Scholar 

  • Billett, M. F., & Moore, T. R. (2007). Supersaturation and evasion of CO2 and CH4 in surface waters at MerBleue peatland, Canada. Hydrol.Process., 22(12), 2044–2054. doi:10.1002/hyp.6805.

    Article  Google Scholar 

  • Borges, A. V., Vanderborght, J. P., Schiettecatte, L. F., Gazeau, F., Ferron - Smith, S., Delille, B., & Frankignoulle, M. (2004). Variability of gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries, 27, 593–603.

    Article  CAS  Google Scholar 

  • Boyd, C. E., Wood, C. W., Chaney, P., & Queiroz, J. F. (2010). Role of aquaculture pond sediments in sequestration of annual global carbon emissions. Environmental Pollution, 158, 2,537–2,540.

    Article  CAS  Google Scholar 

  • Brook, E. J., Sowers, T., & Orchardo, J. (1996). Rapid variation in atmospheric methane concentration during past 110,000 years. Science, 273, 1087–1990.

    Article  CAS  Google Scholar 

  • Cole, J. J., Prairie, Y. T., Carcao, N. F., Mc DSowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., & Melack, J. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 171–184.

    Article  CAS  Google Scholar 

  • FAO. (2014). The State of World Fisheries and Aquaculture. Rome.

  • Hu, Z., Lee, J. W., Chandran, K., Kim, S., & Khanal, S. K. (2012). Nitrous oxide (N2O) emission from aquaculture: a review. Environmental Science & Technology, 46(12), 6470–6480.

    Article  CAS  Google Scholar 

  • IPCC (2007). Climate change 2007: the physical science basis. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (p. 996). Cambridge and New York: Cambridge University Press.

    Google Scholar 

  • IPCC (2014). In T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda, & T. G. Troxler (Eds.), 2013 supplement to the 2006 IPCC guidelines for National Greenhouse Gas Inventories: wetlands. Published: IPCC, Switzerland.

  • Jackson, M. L. (1973). Soil chemical analysis. Delhi: Prentice hall of India Pvt Ltd.

    Google Scholar 

  • Laurion, I., Warwick, F. V., Macintyre, S., Retamal, L., Dupont, C., Francus, P., & Pienitz, R. (2010). Arability in greenhouse gas emissions from permafrost thaw ponds. Limnol.Oceanogr., 55(1), 115–133.

    Article  CAS  Google Scholar 

  • Mer, J. L., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37, 25–50.

    Article  Google Scholar 

  • Piper, C. S. (1966). Soil and plant analysis. Bombay: Hans Publishers.

    Google Scholar 

  • Purvaja, R., & Ramesh, R. (2001). Natural and anthropogenic methane emission from wetlands of South India. Environ. Management, 27, 547–557.

    Article  CAS  Google Scholar 

  • Purvaja, R., Ramesh, R., & Frenzel, P. (2004). Plant mediated methane emission from an Indian mangrove. Global change biology., 10(11), 1825–1834.

    Article  Google Scholar 

  • Reay, D., Smith, K., & Hewitt, C. (2007). Methane: importance, sources and sinks. In D. Reay et al. (Eds.), Greenhouse gas sinks (pp. 143–151). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Robertson, K. (1990). Emissions of N2O in Sweden natural and anthropogenic sources. Ambio, 20(3–4), 151–155.

    Google Scholar 

  • Saggar, S., Andrew, R. M., Tate, K. R., Hedley, C. B., Rodda, N. J., & Townsend, J. A. (2004). Modelling nitrous oxide emissions from dairy grazed pasture. Nutrient cycling in Agrosystems, 68, 243–255.

    Article  CAS  Google Scholar 

  • Singh, S. N., & Tyagi, L. (2009). Nitrous oxide: sources, sinks and mitigation strategies. In A. I. Sheldon & E. P. Barnhart (Eds.), Nitrous oxide emissions research progress (pp. 127–150). New York: Nova Science Publisher.

    Google Scholar 

  • Smith, K. A., Dobbie, K. E., Ball, B. C., Bakken, L. R., Sitaula, B. K., Hansen, S., Brumme, R., Borken, W., Christensen, S., Prieme, A., Fowler, D., Macdonald, J. A., Skiba, U., Klemedtsson, L., Kasimir-Klemedtsson, A., Degorska, A., & Orlanski, P. (2000). Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biology, 6, 791–803.

    Article  Google Scholar 

  • Sobek, S.L., Tranvik, J. & J.J. Cole. (2005). Temperature independence of carbon dioxide supersaturation in global lakes.Glob.Biogeochem, Cycles 19: GB 2003, doi: 10.1029/2004GB002264.

  • Topp, E., & Pattey, E. (1997). Soils as sources and sinks for atmospheric methane. Canadian Journal of Soil Science, 77, 167–178.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, C. A. (1934). An examination of the Degtijareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 93–101.

    Article  Google Scholar 

  • Williams, J., & Crutzen, P. J. (2010). Nitrous oxide from aquaculture. Nature Geoscience, 3(3), 143–143.

    Article  CAS  Google Scholar 

  • Zhang, J., Song, C., & Yang, W. (2005). Cold season CH4, CO2 and N2O fluxes from freshwater marshes in northeast China. Chemosphere, 59, 1703–1705.

    Article  CAS  Google Scholar 

  • Zhu, L., Che, X., Liu, H., Liu, X., Liu, C., Chen, X., & Shi, X. (2015). Greenhouse gas emissions and comprehensive greenhouse effect potential of Megalobrama amblycephala culture pond ecosystems in a 3-month growing season. Aquaculture International, 1–10.

Download references

Acknowledgments

The authors are thankful to present and former Directors of Central Institute of Brackishwater Aquaculture (CIBA) and funding from National Innovations in Climate Resilient Agriculture (NICRA) project of Indian Council of Agriculture Research (ICAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moturi Muralidhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasanth, M., Muralidhar, M., Saraswathy, R. et al. Methodological approach for the collection and simultaneous estimation of greenhouse gases emission from aquaculture ponds. Environ Monit Assess 188, 671 (2016). https://doi.org/10.1007/s10661-016-5646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5646-z

Keywords

Navigation