Skip to main content
Log in

The relationship between solvent use and BTEX concentrations in occupational environments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Indoor air quality is an increasing concern; it causes significant damage to health because it is recycled in confined environments for extended periods of time. Among the pollutants found in these environments, benzene, toluene, ethylbenzene, and xylenes (BTEX) are known for their potential toxic, mutagenic, and carcinogenic effects. This study monitored the BTEX concentrations in paint, carpentry, and varnish workplaces and evaluated the potential to cause adverse health effects on workers in these environments. Twenty samples were collected in workplaces, 20 samples were collected outside the area, and eight samples were taken of the products used. Samples were collected using coconut shell cartridges, and chemical analyses were performed by gas chromatography with mass spectrometry. Toluene presented higher indoor concentrations and indoor and outdoor ratios, indicating that the paint and varnish workplaces had significant BTEX sources. The highest benzene and toluene concentrations were obtained from the paint workshop, and higher concentrations of ethylbenzene and xylenes were obtained in the varnish workshop. The highest non-carcinogenic risks were obtained for m + p-xylenes in the varnish work place, and the second highest non-carcinogenic risk was also determined for the same workshop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ACGIH. (2008). Threshold limit value and biological exposure. American Conference of Governmental Industrial Hygienists: USA.

    Google Scholar 

  • Bravo, H., Sosa, R., Sánchez, P., Bueno, E., & González, R. (2002). Concentrations of benzene and toluene in the atmosphere of the southwestern area at the Mexico City Metropolitan Zone. Atmospheric Environment, 36, 3843–3849. doi:10.1016/S1352-2310(02)00292-3.

    Article  CAS  Google Scholar 

  • Chan, C. Y., Chan, L. Y., Wang, X. M., Liu, Y. M., Lee, S. C., Zou, S. C., Sheng, G. Y., & Fu, J. M. (2002). Volatile organic compounds in roadside microenvironments of metropolitan Hong Kong. Atmospheric Environment, 36, 2039–2047. doi:10.1016/S1352-2310(02)00097-3.

  • Corrêa, S. M., & Arbilla, G. (2007). A two-year of aromatic hydrocarbons monitoring at the downtown area of the city of Rio de Janeiro. Journal of the Brazilian Chemical Society, 18, 539–543. doi:10.1590/S0103-50532007000300007.

    Article  Google Scholar 

  • Corrêa, S. M., Arbilla, G., Marques, M. R. C., & Oliveira, K. M. P. G. (2012a). The impact of BTEX emissions from gas stations into the atmosphere. Atmospheric Pollution Research, 3, 163–169. doi:10.5094/APR.2012.016.

    Article  Google Scholar 

  • Corrêa, S. M., Souza, C. V., Sodré, E. D., & Teixeira, J. R. (2012b). Volatile organic compound emissions from a landfill, plume dispersion and the tropospheric ozone modeling. Journal of the Brazilian Chemical Society, 23, 496–504. doi:10.1590/S0103-50532012000300017.

    Article  Google Scholar 

  • de Castro, B. P., Machado, G. S., Bauerfeldt, G. F., Fortes, J. D. N., & Martins, E. M. (2015). Assessment of the BTEX concentrations and reactivity in a confined parking area in Rio de Janeiro, Brazil. Atmospheric Environment, 104, 22–26. doi:10.1016/j.atmosenv.2015.01.013.

    Article  Google Scholar 

  • Dewangan, S., Chakrabarty, R., Zielinska, B., & Pervez, S. (2013). Emission of volatile organic compounds from religious and ritual activities in India. Environmental Monitoring and Assessment, 185, 9279–9286. doi:10.1007/s10661-013-3250-z.

    Article  CAS  Google Scholar 

  • Durmusoglu, E., Taspinar, F., & Karademir, A. (2010). Health risk assessment of BTEX emissions in the landfill environment. Journal of Hazardous Materials, 176, 870–877. doi:10.1016/j.jhazmat.2009.11.117.

    Article  CAS  Google Scholar 

  • Dutta, C., Som, D., Chatterjee, A., Mukherjee, A. K., Jana, T. K., & Sen, S. (2009). Mixing ratios of carbonyls and BTEX in ambient air of Kolkata, India and their associated health risk. Environmental Monitoring and Assessment, 148, 97–107. doi:10.1007/s10661-007-0142-0.

    Article  CAS  Google Scholar 

  • Farshad, A., Oliaei, H. K., Mirkazemi, R., & Bakand, S. (2013). Risk assessment of benzene, toluene, ethylbenzene and xylenes (BTEX) in paint plants of two automotive industries in Iran by using the COSHH guideline. European Science Journal, 3, 270–276.

    Google Scholar 

  • Gioda, A., & Aquino Neto, F. R. (2003). Comments on studies of industrial and non-industrial environments in Brazil: a comparative approach. Cadernos de Saúde Pública, 19, 1389–1397.

    Article  Google Scholar 

  • Guo, H., Murray, F., & Wilkinson, S. (2000). Evaluation of total volatile organic compound emissions from adhesives based on chamber tests. Journal of the Air & Waste Management Association, 50, 199–206. doi:10.1080/10473289.2000.10464006.

    Article  CAS  Google Scholar 

  • Guo, H., Lee, S. C., Chan, L. Y., & Li, W. M. (2004). Risk assessment of exposure to volatile organic compounds in different indoor environments. Environmental Research, 94, 57–66. doi:10.1016/S0013-9351(03)00035-5.

    Article  CAS  Google Scholar 

  • Hinwood, A. L., Rodriguez, C., Runnion, T., Farrar, D., Murray, F., Horton, A., & Galbally, I. (2007). Risk factors for increased BTEX exposure in four Australian cities. Chemosphere, 66, 533–541. doi:10.1016/j.chemosphere.2006.05.040.

    Article  CAS  Google Scholar 

  • Ilgen, E., Karfich, N., Levsen, K., Angerer, J., Schneider, P., Heinrich, J., Wichmann, H., Dunemann, L., & Begerow, J. (2001). Aromatic hydrocarbons in the atmospheric environment: part I. Indoor versus outdoor sources, the influence of traffic. Atmospheric Environment, 35, 1235–1252. doi:10.1016/S1352-2310(00)00388-5.

    Article  CAS  Google Scholar 

  • Jones, A. P. (1999). Indoor air quality and health. Atmospheric Environment, 33, 4535–4564. doi:10.1016/S1352-2310(99)00272-1.

    Article  CAS  Google Scholar 

  • Jung, K. H., Artigas, F., & Shin, J. Y. (2010). Personal, indoor, and outdoor exposure to VOCs in the immediate vicinity of a local airport. Environ Monit Assess, 173, 555–567. doi:10.1007/s10661-010-1404-9.

    Article  Google Scholar 

  • Karakitsios, S. P., Sarigiannis, D. A., Gotti, A., Kassomenos, P. A., & Pilidis, G. A. (2013). A methodological frame for assessing benzene induced leukemia risk mitigation due to policy measures. Science of the Total Environment, 443, 549–558.

    Article  CAS  Google Scholar 

  • Klinmalee, A., Srimongkol, K., & Kim Oanh, N. T. (2009). Indoor air pollution levels in public buildings in Thailand and exposure assessment. Environmental Monitoring and Assessment, 156, 581–594. doi:10.1007/s10661-008-0507-z.

    Article  CAS  Google Scholar 

  • Kumar, A., Singh, B. P., Punia, M., Singh, D., Kumar, K., & Jain, V. K. (2014). Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environmental Science and Pollution Research International, 21, 2240–2248. doi:10.1007/s11356-013-2150-7.

    Article  CAS  Google Scholar 

  • LaGrega, M. D., Buckingham, P. L., & Evans, J. C. (1994). Hazardous waste management. New York: McGraw Hill. ISBN 0-07-019552-8.

    Google Scholar 

  • Lim, S. K., Shin, H. S., Yoon, K. S., Kwack, S. J., Um, Y. M., Hyeon, J. H., Lee, B. M., et al. (2014). Risk assessment of volatile organic compounds benzene, toluene, ethylbenzene, and xylene (BTEX) in consumer products. Journal of Toxicology and Environmental Health A, 77, 1502–1521. doi:10.1080/15287394.2014.955905.

    Article  CAS  Google Scholar 

  • Maroni, M., Seifert, B., & Lindvall, T. (1995). Indoor air quality—a comprehensive reference book. Amsterdam: Elsevier. ISBN 0444816429.

    Google Scholar 

  • Martins, E. M., Quiterio, S. L., Corrêa, S. M., Fortes, J. D. N., Monteiro, M., & Prestes, B. (2014). BTEX inside a spinning classroom. Cadernos de Saúde Coletiva, 22, 218–220. doi:10.1590/1414-462X201400020017.

    Article  Google Scholar 

  • Massolo, L., Rehwagen, M., Porta, A., Ronco, A., Herbarth, O., & Mueller, A. (2010). Indoor-outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas. Environmental Toxicology, 25, 339–349. doi:10.1002/tox.20504.

    Article  CAS  Google Scholar 

  • Ministry of Labor and Employment (MTE) (1994) Regulatory Standard (NR 9). Prevention program of environmental risks. http://sislex.previdencia.gov.br/paginas/05/mtb/9.htm. Accessed 28 May 2015.

  • Ministry of Labor and Employment (MTE) (1995a) Normative Instruction N. 1. Assessment of benzene concentrations in workplaces relating to Annex 13-A Benzene, of Regulatory Standard n. 15—unhealthy activities and operations. http://www.lex.com.br/doc_10174_INSTRUCAO_NORMATIVA_N_1_DE_20_DE_DEZEMBRO_DE_1995.aspx. Accessed 08 Jul 2015.

  • Ministry of Labor and Employment (MTE) (1995b) Ordinance no. 14. Change the item of carcinogenic substances of Annex 13, of Regulatory Standard no. 15—unhealthy activities and operations. http://sislex.previdencia.gov.br/paginas/05/mtb/15.htm. Accessed Jul 2015.

  • NIOSH. (2003). Manual of analytical methods (NMAM) (4th ed.). National Institute for Occupational Safety and Health, Accessed 28 May 2015.

    Google Scholar 

  • OSHA. (2016). Occupational Safety and Health Administration. https://www.osha.gov/dsg/annotatedpels/tablez-1.html. Accessed Oct 2016.

  • Palmiotto, M., Fattore, E., Paiano, V., Celeste, G., Colombo, A., & Davoli, E. (2014). Influence of a municipal solid waste landfill in the surrounding environment: toxicological risk and odor nuisance effects. Environmental International, 68, 16–24. doi:10.1016/j.envint.2014.03.004.

    Article  CAS  Google Scholar 

  • Possanzini, M., Di Palo, V., & Cecinato, A. (2002). Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air. Atmospheric Environment, 36, 3195–3201. doi:10.1016/S1352-2310(02)00192-9.

    Article  CAS  Google Scholar 

  • Ras, M. R., Marcé, R. M., & Borrull, F. (2010). Volatile organic compounds in air at urban and industrial areas in the Tarragona region by thermal desorption and gas chromatography-mass spectrometry. Environmental Monitoring and Assessment, 161, 389–402. doi:10.1007/s10661-009-0755-6.

    Article  Google Scholar 

  • Rodrics, J. V., Brett, S. M., & Wrenn, G. C. (1987). Significant risk decisions in federal regulatory agencies. Regulatory Toxicology and Pharmacology, 7, 307–320. doi:10.1016/0273-2300(87)90038-9.

    Article  Google Scholar 

  • Rodrigues, F., Milas, I., Martins, E. M., Arbilla, G., Bauerfeldt, G. F., & Paula, M. D. (2007). Experimental and theorical study of the air quality in a suburban industrial-residential area in Rio de Janeiro, Brazil. Journal of the Brazilian Chemical Society, 18, 342–351. doi:10.1590/S0103-50532007000200015.

    Article  CAS  Google Scholar 

  • Sarigiannis, D. A., & Gotti, A. (2008). Biology-based dose-response models for health risk assessment of chemical mixtures. Fresenius Environmental Bulletin, 17, 1439–1451.

    CAS  Google Scholar 

  • Sarigiannis, D., Gotti, A., Cimino Reale, G., & Marafante, E. (2009). Reflections on new directions for risk assessment of environmental chemical mixtures. International Journal of Risk Assessment and Management, 13, 216–241.

    Article  CAS  Google Scholar 

  • Sarigiannis, D. A., Karakitsios, S. P., Gotti, A., Liakos, I. L., & Katsoyiannis, A. (2011). Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environmental International, 37, 743–765. doi:10.1016/j.envint.2011.01.005.

    Article  CAS  Google Scholar 

  • Tunsaringkarn, T., Siriwong, W., Rungsiyothin, A., & Nopparatbundit, S. (2012). Occupational exposure of gasoline station workers to BTEX compounds in Bangkok, Thailand. International Journal of Occupational Environmental Medicine, 3, 117–125.

    CAS  Google Scholar 

  • U.S.EPA (1989) Risk assessment guidance for superfund. Volume I—human health evaluation manual (part A) EPA/540/1-89/002. Washington D.C. 20450.

  • Vilavert, L., Nadal, M., Figueras, M. J., & Domingo, J. L. (2012). Volatile organic compounds and bioaerosols in the vicinity of a municipal waste organic fraction treatment plant. Human health risks. Environmental Science Pollution Research, 19, 96–104. doi:10.1007/s11356-011-0547-8.

    Article  CAS  Google Scholar 

  • Ward, T. J., Underberg, H., Jones, D., Hamilton, R. F., & Adams, E. (2009). Indoor/ambient residential air toxics results in rural western Montana. Environmental Monitoring and Assessment, 153, 119–126. doi:10.1007/s10661-008-0342-2.

    Article  CAS  Google Scholar 

  • Weisel, C. P. (2010). Benzene exposure: an overview of monitoring methods and their findings. Chemico-Biological Interactions, 184, 58–66. doi:10.1016/j.cbi.2009.12.030.

    Article  CAS  Google Scholar 

  • Wilbur, S., Wohlers, D., Paikoff, S., Keith, L. S., & Faroon, O. (2008). ATSDR evaluation of health effects of benzene and relevance to public health. Toxicology Industrial Health, 24, 263–398. doi:10.1177/0748233708090910.

    Article  CAS  Google Scholar 

  • Yoon, C., Lee, K., & Park, D. (2011). Indoor air quality differences between urban and rural preschools in Korea. Environmental Science and Pollution Research, 18, 333–345. doi:10.1007/s11356-010-0377-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Research Support Foundation of the State of Rio de Janeiro (FAPERJ) and National Council for Scientific and Technological Development (CNPq) for the financial support and research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Machado Corrêa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, E.M., Borba, P.F.d.S., dos Santos, N.E. et al. The relationship between solvent use and BTEX concentrations in occupational environments. Environ Monit Assess 188, 608 (2016). https://doi.org/10.1007/s10661-016-5621-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5621-8

Keywords

Navigation