Skip to main content

Advertisement

Log in

Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Cardon, Z. G., Hungate, B. A., Cambardella, C. A., Chapin, F. S., Field, C. B., Holland, E. A., & Mooney, H. A. (2001). Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biology and Biochemistry, 33, 365–373.

    Article  CAS  Google Scholar 

  • Carrillo, Y., Pendall, E., Dijkstra, F. A., Morgan, J. A., & Newcomb, J. M. (2011). Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant and Soil, 347, 339–350.

    Article  CAS  Google Scholar 

  • Chen, H., Fan, M., Billen, N., Stahr, K., & Kuzyakov, Y. (2009). Effect of land use types on decomposition of 14C-labelled maize residue (Zea mays L.). European Journal of Soil Biology, 45, 123–130.

    Article  CAS  Google Scholar 

  • Cheng, L., Leavitt, S. W., Kimball, B. A., Pinter, P. J., Ottman, M. J., Matthias, A., Wall, G. W., Brooks, T., Williams, D. G., & Thompson, T. L. (2007). Dynamics of labile and recalcitrant soil carbon pools in a sorghum free-air CO2 enrichment (FACE) agroecosystem. Soil Biology and Biochemistry, 39, 2250–2263.

    Article  CAS  Google Scholar 

  • Cheng, H., Ren, W., Ding, L., Liu, Z., & Fang, C. (2013). Responses of a rice–wheat rotation agroecosystem to experimental warming. Ecological Research, 28, 959–967.

    Article  CAS  Google Scholar 

  • Conant, R. T., Drijber, R. A., Haddix, M. L., Parton, W. J., Paul, E. A., Plante, A. F., Six, J., & Steinweg, J. M. (2008). Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biology, 14, 868–877.

    Article  Google Scholar 

  • Conen, F., Leifeld, J., Seth, B., & Alewell, C. (2006). Warming mineralizes young and old soil carbon equally. Biogeosciences, 3, 515–519.

    Article  CAS  Google Scholar 

  • Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173.

    Article  CAS  Google Scholar 

  • Fang, C., Smith, P., & Smith, J. U. (2005). Is resistant soil organic matter more sensitive to temperature than the labile organic matter? Biogeosciences Discussions, 2, 725–735.

    Article  Google Scholar 

  • Fierer, N., Craine, J. M., McLauchlan, K., & Schimel, J. P. (2005). Litter quality and the temperature sensitivity of decomposition. Ecology, 86, 320–326.

    Article  Google Scholar 

  • Fierer, N., Colman, B. P., Schimel, J. P., & Jackson, R. B. (2006). Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Global Biogeochemical Cycles, 20.

  • Hartley, I. P., & Ineson, P. (2008). Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biology and Biochemistry, 40, 1567–1574.

    Article  CAS  Google Scholar 

  • Hu, S., Tu, C., Chen, X., & Gruver, J. B. (2006). Progressive N limitation of plant response to elevated CO2: a microbiological perspective. Plant and Soil, 289, 47–58.

    Article  CAS  Google Scholar 

  • Hungate, B. A., Holland, E. A., Jackson, R. B., Chapin, F. S. I., Mooney, H. A., & Field, C. B. (1997). The fate of carbon in grasslands under carbon dioxide enrichment. Nature, 388, 576–579.

    Article  CAS  Google Scholar 

  • Kirschbaum, M. U. F. (1995). The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biology and Biochemistry, 27, 753–760.

    Article  CAS  Google Scholar 

  • Kirschbaum, M. U. F. (2006). The temperature dependence of organic-matter decomposition: still a topic of debate. Soil Biology and Biochemistry, 38, 2510–2518.

    Article  CAS  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.

    Article  CAS  Google Scholar 

  • Lefèvre, R., Barré, P., Moyano, F. E., Christensen, B. T., Bardoux, G., Eglin, T., Girardin, C., Houot, S., Kätterer, T., Oort, F. V., & Chenu, C. (2014). Higher temperature sensitivity for stable than for labile soil organic carbon-evidence from incubations of long-term bare fallow soils. Global Change Biology, 20, 633–640.

    Article  Google Scholar 

  • Liu, Y., Li, M., Zheng, J., Li, L., Zhang, X., Zheng, J., Pan, G., Yu, X., & Wang, J. (2014). Short-term responses of microbial community and functioning to experimental CO2 enrichment and warming in a Chinese paddy field. Soil Biology and Biochemistry, 77, 58–68.

    Article  CAS  Google Scholar 

  • Lu, R. (2000). Methods for soil agro-chemistry analysis. Beijing: China Agricultural Science and Technology (In Chinese).

    Google Scholar 

  • Melillo, J. M., Steudler, P. A., Aber, J. D., Newkirk, K., Lux, H., Bowles, F. P., Catricala, C., Magill, A., Ahrens, T., & Morrisseau, S. (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173–2176.

    Article  CAS  Google Scholar 

  • Pan, G. (2010). Impact of climate change on Chinese agricultural production: a analysis and evaluation. Beijing: China Agricultural.

    Google Scholar 

  • Pan, G., Li, L., Wu, L., & Zhang, X. (2004). Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Global Change Biology, 10, 79–92.

    Article  Google Scholar 

  • Pendall, E., & King, J. Y. (2007). Soil organic matter dynamics in grassland soils under elevated CO2: insights from long-term incubations and stable isotopes. Soil Biology and Biochemistry, 39, 2628–2639.

    Article  CAS  Google Scholar 

  • Pendall, E., Bridgham, S., Hanson, P. J., Hungate, B., Kicklighter, D. W., Law, B. E., Luo, Y., Megonigal, J. P., Olsrud, M., Ryan, M. G., & Wan, S. (2004). Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytologist, 162, 311–322.

    Article  Google Scholar 

  • Priha, O., & Smolander, A. (1999). Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Soil Biology and Biochemistry, 31, 965–977.

    Article  CAS  Google Scholar 

  • Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., Thieler, K. K., Downs, M. R., Launder, J. A., & Rastetter, E. B. (2006). Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. Journal of Ecology, 94, 740–753.

    Article  CAS  Google Scholar 

  • Sun, G., & Mu, M. (2012). Responses of soil carbon variation to climate variability in China using the LPJ model. Theoretical and Applied Climatology, 110, 143–153.

    Article  Google Scholar 

  • Wang, G., Zhang, L., Zhuang, Q., Yu, D., Shi, X., Xing, S., Xiong, D., & Liu, Y. (2016). Quantification of the soil organic carbon balance in the Tai-Lake paddy soils of China. Soil and Tillage Research, 155, 95–106. doi:10.1016/j.still.2015.08.003.

    Article  Google Scholar 

  • Xu, X., Zhou, Y., Ruan, H., Luo, Y., & Wang, J. (2010). Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China. Soil Biology and Biochemistry, 42, 1811–1815.

    Article  CAS  Google Scholar 

  • Zhang, X. F., Wang, D. Y., Fang, F. P., Zhen, Y. K., & Liao, X. Y. (2005). Food safety and rice production in China. Research of Agricultural Modernization, 26, 85–88.

    Google Scholar 

  • Zhang, X. H., Li, L. Q., & Pan, G. X. (2007). Topsoil organic carbon mineralization and CO2 evolution of three paddy soils from South China and the temperature dependence. Journal of Environmental Sciences, 19, 319–326.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (41171238, 41471192), the Special Fund for Agro-Scientific Research in the Public Interest (201503106, 200903003), and the Ministry of Science and Technology (2013BAD11B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqin Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wang, B., Wang, J. et al. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field. Environ Monit Assess 188, 545 (2016). https://doi.org/10.1007/s10661-016-5563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5563-1

Keywords

Navigation