Skip to main content

Advertisement

Log in

Monitoring temperature sensitivity of soil organic carbon decomposition under maize–wheat cropping systems in semi-arid India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Long-term storage of soil organic carbon (SOC) is essential for sustainability of agricultural ecosystems and maintaining overall environment quality as soils contain a significant part of global carbon stocks. In this study, we attempted to explain the carbon mineralization and temperature sensitivity of SOC in maize–wheat systems, a common cropping system in the semi-arid regions of India. Soil samples(0–0.15 m) from long-term experimental plots laid in split plot design with two tillage systems (conventional tillage and bed planting) and six nutrient management treatments (T 1 = control, T 2 = 120 kg urea—N/ha, T 3 = T2 (25 % N substituted by farmyard manure (FYM)), T 4 = T 2 (25 % N substituted by sewage sludge), T 5 = T 2 + crop residue, T 6 = 100 % recommended doses of N through organic source - 50 % FYM + 25 % biofertilizer + 25 % crop residue) were incubated at different temperatures (25, 30, 35, and 40 °C) to determine the thermal sensitivity parameters associated with carbon mineralization. Earlier reports suggest a selective preservation of C3-derived carbon fractions over C4 in the SOC pool, and this is the first instance where δ 13C signatures (C4-derived carbon) were used as a qualitative measure to assess thermal sensitivity of SOC pools in the maize—wheat crop rotation systems of semi-arid India. Among the nutrient management treatments, mineral fertilizers were found to add more C4-derived carbon to the SOC pool in both the tillage systems but shows less promise in SOC stability as indicated by their lower activation energies (Ea) (14.25 kJ mol−1). Conventional tillage was found to mineralize 18.80 % (T 1—control at 25 °C) to 29.93 % carbon (T 3—mineral fertilizer + FYM at 40 °C) during the 150 days of incubation which was significantly higher than bed planting system (14.90 % in T 1—control at 25 °C and 21.99 % in T 6—100% organic sources at 40 °C). Organic manures, especially FYM (19.11 kJ mol−1) and 100 % organics (19.33 kJ mol−1) were more effective in enhancing the Ea of SOC than plots with mineral fertilizers alone (14.25 kJ mol−1), but had relatively higher Q 10 values thereby corroborating the thermal sensitivity hypothesis of recalcitrant organic compounds in soil. Michaelis–Menten derivatives along with thermal sensitivity indicators such as Ea and Q 10 were found to be efficient parameters for explaining carbon mineralization and CO2 efflux from soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison, S. D., Wallenstein, M. D., & Bradford, M. A. (2010). Soil carbon response to warming dependent on microbial physiology. Nature Geoscience, 3(5), 336340.

    Article  Google Scholar 

  • Anderson, J. P. E. (1982). Soil respiration. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis, part 2. Chemical and Microbiological properties (pp. 831–871). Madison: Agronomy monograph No. 9, ASA - SSSA publisher.

    Google Scholar 

  • Balesdent, J., & Mariotti, A. (1996). Measurement of soil organic matter turnover using 13C natural abundance. In T. W. Boutton & S. Yamasaki (Eds.), Mass Spectrometry of Soils (pp. 83–111). New York: Marcel Dekker.

    Google Scholar 

  • Biasi, C., Pitkamaki, A. S., Tavi, N. M., Koponen, H. T., & Martikainen, P. J. (2012). An isotope approach based on 13C pulse-chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peatlands. Boreal Environment Research, 17, 184–192.

    CAS  Google Scholar 

  • Bird, M. I., & Pousai, P. (1997). Variations of δ13C in the surface soil organic carbon pool. Global Biogeochemical Cycles, 11, 313–322.

    Article  CAS  Google Scholar 

  • Boddy, E., Roberts, P., Hill, P. W., Farrar, J., & Jones, D. L. (2008). Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils. Soil Biology and Biochemistry, 40, 1557–1566.

    Article  CAS  Google Scholar 

  • Bradford, M. A., Davies, C. A., Frey, S. D., Maddox, T. R., Melillo, J. M., Mohan, J. E., Reynolds, J. F., Treseder, K. K., & Wallenstein, M. D. (2008). Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 11, 1316–1327.

    Article  Google Scholar 

  • Brown, R. H. (1978). A difference in N use efficiency in C3 and C4 plants and its implication in adaptation and evaluation. Crop Science, 18, 93–98.

    Article  CAS  Google Scholar 

  • Cernusak, L. A., Tcherkez, G., Keitel, C., Cornwell, W. K., Santiago, L. S., Knohl, A., Barbour, M. M., Williams, D. G., Reich, P. B., Ellsworth, D. S., Dawson, T. E., Griffiths, H. G., Farquhar, G. D., & Wright, I. J. (2009). Why are non-photosynthetic tissues generally 13C-enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology, 36, 199–213.

    Article  CAS  Google Scholar 

  • Cogle, A. L., Saffigna, P. G., & Strong, W. M. (1989). Carbon transformation during wheat straw decomposition. Soil Biology and Biochemistry, 21, 367–372.

    Article  Google Scholar 

  • Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F., Hyvönen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton, W. J., Steinweg, J. M., Wallenstein, M. D., Wetterstedt, J. Å. M., & Bradford, M. A. (2011). Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Global Change Biology, 17, 3392–3404.

    Article  Google Scholar 

  • Craine, J. M., Fierer, N., & Mclauchlan, K. K. (2010). Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3, 854–857.

    Article  CAS  Google Scholar 

  • Daniel, J., Davis, J., & Grant, L. (2002). Organic Farming Research Foundation Project Report, #00–49: long-term organic farming impacts on soil fertility.

    Google Scholar 

  • Davidson, E. A., Janssens, I. A., & Luo, Y. (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154–164.

    Article  Google Scholar 

  • Ehleringer, J. R., & Osmond, C. B. (1989). Stable isotopes. In R. W. Pearcy, J. Ehlringer, H. A. Mooney, & P. W. Rundel (Eds.), Plant Physiological Ecology: Field Methods and Instrumentation (pp. 281–300). Chapman and Hall: New York.

    Chapter  Google Scholar 

  • Fang, C., Smith, P., Moncrieff, J. B., & Smith, J. U. (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57–59.

    Article  CAS  Google Scholar 

  • Fry, B. (2006). Stable isotope ecology. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Giardina, C. P., & Ryan, M. G. (2000). Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 404, 858–861.

    Article  CAS  Google Scholar 

  • Gillabel, J., Cerbrian-Lopez, B., Six, J., & Merckx, R. (2010). Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Global Change Biology, 16, 2789–2798.

    Article  Google Scholar 

  • Hobbs, J. K., Jiao, W., Easter, A. D., Parker, E. J., Schipper, L. A., & Arcus, V. L. (2013). Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chemical Biology, 8, 2388–2393.

    Article  CAS  Google Scholar 

  • Houghton, R. A. (2007). Balancing the global carbon budget. The Annual Review of Earth and Planetary Sciences, 35, 313–347.

    Article  CAS  Google Scholar 

  • Karlén, I., Olsson, I. U., Kallburg, P., & Kilici, S. (1968). Absolute determination of the activity of two 14C dating standards. Arkiv Geofysik, 4, 465–471.

    Google Scholar 

  • Katyal, J. C., Rao, N. H., & Reddy, M. N. (2001). Critical aspects of organic matter management in the tropics: the example of India. Nutrient Cycling in Agroecosystems, 61, 77–88.

    Article  Google Scholar 

  • Kirschbaum, M. U. F. (1995). The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry, 27, 753–760.

    Article  CAS  Google Scholar 

  • Knorr, W., Prentice, I. C., House, J. I., & Holland, E. A. (2005). Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298–301.

    Article  CAS  Google Scholar 

  • Kuzyakov, Y., & Domanski, G. (2000). Carbon input by plants into soil—review. Journal of Plant Nutrition and Soil Science, 163, 421–431.

    Article  CAS  Google Scholar 

  • Lal, R., Kimble, J. M., Follet, R. F., & Cole, C. V. (1998). Potential of U.S. cropland to sequester C and mitigate the greenhouse effect. Boca Raton: CRC/Lewis.

    Google Scholar 

  • Leite, L. F. C., Mendonca, E. S., Machado, P. L. O. A., & Matos, E. S. (2003). Total C and N storage and organic C pools of a red yellow podzolic under conventional and no tillage at the Atlantic forest zone, south eastern Brazil. Australian Journal of Soil Research, 41, 717–730.

    Article  CAS  Google Scholar 

  • Lloyd, J., & Taylor, J. A. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8(3), 315–323.

    Article  Google Scholar 

  • Luo, Y. Q., Wan, S. Q., Hui, D. F., & Wallace, L. L. (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622–625.

    Article  CAS  Google Scholar 

  • Lu, C., Ma, J., Chen, X., Zhang, X., Shi, Y., & Huang, B. (2010). Effect of nitrogen fertilizer and maize straw incorporation on NH4 +-15N and NO3 -15N accumulation in black soil of northeast China among three consecutive cropping cycles. Journal of Soil Science and Plant Nutrition, 10, 443–453.

    Article  Google Scholar 

  • Majumder, B., Mandal, B., & Bandyopadhyay, P. K. (2008). Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice berseem agroecosystem. Biology and Fertility of Soils, 44, 451–461.

    Article  Google Scholar 

  • Medina, E. (1970). Effect of nitrogen supply and light intensity during growth on the photosynthetic capacity and carboxydismutase activity of leaves of Atriplex patula spp. hastata. Carnegie Institute Year Book, 70, 551–559.

    Google Scholar 

  • Paustian, K., Cole, C. V., Sauerbeck, D. R., & Sampson, N. (1998). CO2 mitigation by agriculture: an overview. Climatic Change, 40, 135–162.

    Article  CAS  Google Scholar 

  • Plante, A. F., Carlson, J., Greenwood, R., Shulmanb, J. M., Haddix, M. L., & Paul, E. A. (2010). Decomposition temperature sensitivity of particulate and non-hydrolyzable soil organic matter. Soil Biology and Biochemistry, 42, 1991–1996.

    Article  CAS  Google Scholar 

  • Reichstein, M., Kätterer, T., Andre, O., Ciais, P., Schulze, E. D., Cramer, W., Papale, D., & Valentini, R. (2005). Does the temperature sensitivity of decomposition vary with soil organic matter quality? Biogeoscience Discussions, 2, 737–747.

    Article  Google Scholar 

  • Ryan, M. C., Aravena, R., & Gillham, R. W. (1995). The use of 13C natural abundance to investigate the turnover of the microbial biomass and active fractions of soil organic matter under two tillage treatments. In R. Lal, J. Kimble, E. Levine, & B. A. Stewart (Eds.), Soils and Global Change (pp. 351–360). Boca Raton: CRC Press.

    Google Scholar 

  • Sandeep, S., & Manjaiah, K. M. (2014). Thermal stability of organic carbon in soil aggregates of maize-wheat system in semi arid India. Journal of Soil Science and Plant Nutrition, 14, 625–639.

    Google Scholar 

  • Sandeep, S., Manjaiah, K. M., Pal, S., & Singh, A. K. (2016). Soil carbon fractions under maize–wheat systems: effect of tillage and nutrient management. Environmental Monitoring and Assessment, 188, 14. doi:10.1007/s10661-015-4995-3.

    Article  CAS  Google Scholar 

  • Schipper, L. A., Hobbs, J. K., Rutledge, S., & Arcus, V. L. (2014). Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Global change biology, 20, 3578–3586.

    Article  Google Scholar 

  • Seemann, J. R., Sharkey, T. D., Wang, J., & Osmond, C. B. (1987). Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiology, 84(3), 796–802.

    Article  CAS  Google Scholar 

  • Shirani, H., Hajabbasi, M. A., Afyuni, M., & Hemmat, A. (2002). Effects of farmyard manure and tillage systems on soil physical properties and corn yield in central Iran. Soil and Tillage Research, 68, 101–108.

    Article  Google Scholar 

  • Sihi, D., Gerber, S., Inglett, P. W., & Inglett, K. S. (2016). Comparing models of microbial substrate interactions and their response to warming. Biogeosciences, 13, 1733–1752.

    Article  Google Scholar 

  • Singh, G. R., Pandya, K. S., Chaure, N. K., Parihar, S. S., & Choudhary, K. (2000). Soil fertility, productivity and profitability of rice under different organic manures. Oryza, 37, 208–212.

    Google Scholar 

  • Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 7–31.

    Article  Google Scholar 

  • Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155–176.

    Article  CAS  Google Scholar 

  • Still, C. J., Berry, J. A., Collatz, J. G., & DeFries, R. S. (2003). Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochemical Cycles, 17, 1–6.

    Article  Google Scholar 

  • Tian, G., Kang, B. T., & Brussaard, T. (1992). Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: decomposition and nutrient release. Soil Biology and Biochemistry, 24, 1051–1060.

    Article  CAS  Google Scholar 

  • Tjoelker, M. G., Oleksyn, J., & Reich, P. B. (2001). Modelling respiration of vegetation: evidence for a temperature-dependent Q10. Global Change Biology, 7, 223–230.

    Article  Google Scholar 

  • Trinsoutrot, I., Recous, S., Mary, B., & Nicholardot, B. (2000). C and N fluxes of decomposing 13C and 15N Brassica napus L: effects of residue composition and N content. Soil Biology and Biochemistry, 32, 1717–1730.

    Article  CAS  Google Scholar 

  • Vanhala, P., Karhu, K., Tuomi, M., Sonninenb, E., Jungnerb, H., Fritzec, H., & Liskia, J. (2007). Old soil carbon is more temperature sensitive than the young in an agricultural field. Soil Biology and Biochemistry, 39, 2967–2970.

    Article  CAS  Google Scholar 

  • Verma, B. C., Datta, S. P., Rattan, R. K., & Singh, A. K. (2010). Monitoring changes in soil organic carbon pools, nitrogen, phosphorus, and sulfur under different agricultural management practices in the tropics. Environmental Monitoring and Assessment, 171, 579–593.

    Article  CAS  Google Scholar 

  • Von Lützow, M., & Kögel-Knabner, I. (2009). Temperature sensitivity of soil organic matter decomposition—what do we know? Biology and Fertility of Soils, 46, 1–15.

    Article  Google Scholar 

  • Von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. European Journal of Soil Science, 57, 426–445.

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wallenstein, M., Allison, S. D., Ernakovich, J., Steinweg, J. M., & Sinsabaugh, R. L. (2011). Controls on the temperature sensitivity of soil enzymes: a key driver of in situ enzyme activity rates. In G. Shukla & A. Varma (Eds.), Soil enzymology (pp. 245–258). Berlin: Springer.

    Google Scholar 

  • Wang, W. J., Baldock, J. A., Dalal, R. C., & Moody, P. W. (2004). Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis. Soil Biology and Biochemistry, 36, 2045–2058.

    Article  CAS  Google Scholar 

  • Wieder, W. R., Bonan, G. B., & Allison, S. D. (2013). Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change, 3, 909–912.

    Article  CAS  Google Scholar 

  • Wynn, J. G., & Bird, M. (2007). C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils. Global Change Biology, 13, 1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sandeep.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandeep, S., Manjaiah, K.M., Mayadevi, M.R. et al. Monitoring temperature sensitivity of soil organic carbon decomposition under maize–wheat cropping systems in semi-arid India. Environ Monit Assess 188, 451 (2016). https://doi.org/10.1007/s10661-016-5455-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5455-4

Keywords

Navigation