Skip to main content
Log in

Investigation of groundwater behavior in response to oceanic tide and hydrodynamic assessment of coastal aquifers

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study was based, firstly, on observations and analysis of water table level variations in the Plio-Quaternary and Hauterivian aquifers, Oualidia (Morocco), and secondly, on comparing this behavior to oceanic tidal variations. Recordings were made in the well located at 1318 m from the coast, where the two aquifers are in direct contact. This investigation was subdivided into two periods of 4 months each. Results showed a tidal influence on water table level within the well during semi-diurnal and monthly periods. Water table fluctuation periods were equal to 12 h 25 min identical to oceanic tide propagation period, while time lag between water levels was equal to 3 h 24 min. Moreover, results allowed aquifer diffusivity calculation through a confined aquifer model, which was equal to 6.20 m2 s−1 calculated from average value of water amplitude and to 40.6 m2 s−1 calculated from average value of time lag. In addition, tidal wave amplitude attenuation occurred exponentially with distance from ocean, which disappeared completely after 2000 m from coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alcoléa, A., Castro, E., Barbieri, M., Carrera, J., & Bea, S. (2007). Inverse modeling of coastal aquifers using tidal response and hydraulic tests. Ground Water, 45(6), 711–722.

    Article  Google Scholar 

  • Balugani, E., & Antonellini, M. (2011). Barometric pressure influence on water table fluctuations in coastal aquifers of partially enclosed seas: an example from the Adriatic coast, Italy. Journal of Hydrology, 400, 176–186.

    Article  Google Scholar 

  • Bear, J. (1979). Hydraulics of groundwater. London: McGraw-Hill Inc.

    Google Scholar 

  • Bear, J., & Cheng, A. H.-D. (2010). Modeling groundwater flow and contaminant transport. Dordrecht: Springer.

    Book  Google Scholar 

  • Bear, J., Cheng, A. H.-D., Sorek, S., Ouazar, D., & Herrera, I. (1999). Seawater intrusion in coastal aquifers: concepts, methods and practices. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Boussinesq J (1877) Essai sur la théorie des eaux courantes. Mém. Acad. Sci. Paris, Imprimerie Nationale, Paris, 252 p.

  • Capaccioni, B., Didero, M., Paletta, C., & Didero, L. (2005). Saline intrusion and refreshening in a multilayer coastal aquifer in the Catania Plain (Sicily, Southern Italy): dynamics of degradation processes according to the hydrochemical characteristics of groundwaters. Journal of Hydrology, 307, 1–16.

    Article  CAS  Google Scholar 

  • Cheng, A. H.-D., & Ouazar, D. (Eds.). (2003). Coastal aquifer management: monitoring, modeling and case studies. Boca Raton: Lewis Publishers.

    Google Scholar 

  • De Cazenove, E. (1971). Ondes phréatiques sinusoïdales. La Houille Blanche, 26, 601–616.

    Article  Google Scholar 

  • Dong, L., Shimada, J., Kagabu, M., & Yang, H. (2015). Barometric and tidal-induced aquifer water level fluctuation near the Ariake Sea. Environmental Monitoring and Assessment, 187(1), 1–16.

    Article  CAS  Google Scholar 

  • Erskine, A. D. (1991). The effect of tidal fluctuation on a coastal aquifer in the UK. Ground Water, 29(4), 556–562.

    Article  Google Scholar 

  • Etcheverry, L. R., Saraceno, M., Piola, A. R., Valladeau, G., & Möller, O. O. (2015). A comparison of the annual cycle of sea level in coastal areas from gridded satellite altimetry and tide gauges. Continental Shelf Research, 92, 87–97.

    Article  Google Scholar 

  • Fadili, A. (2014). Etude hydrogéologique et géophysique de l’extension de l’intrusion marine dans le sahel de l’Oualidia (Maroc): analyse statistique, hydrochimie et prospection électrique. Maroc: Thèse univ. Chouaïb Doukkali. 289.

    Google Scholar 

  • Fadili, A., Mehdi, K., Malaurent, P., Riss, J., Boutayeb, K., & Guessir, H. (2012). Influence de la marée océanique sur la variation du niveau piézométrique de l’aquifère karstique côtier de Oualidia (Maroc), Africa. Geoscience Review, 19(3), 135–150.

    Google Scholar 

  • Fadili, A., Mehdi, K., Riss, J., Najib, S., Makan, A., & Boutayab, K. (2015). Evaluation of groundwater mineralization processes and seawater intrusion extension in the coastal aquifer of Oualidia, Morocco: hydrochemical and geophysical approach. Arabian Journal of Geosciences, 8(10), 8567–8582.

    Article  CAS  Google Scholar 

  • Fadili, A., Najib, S., Mehdi, K., Riss, J., Makan, A., Boutayeb, K., & Guessir, H. (2016). Hydrochemical features and mineralization processes in coastal groundwater of Oualidia, Morocco. Journal of African Earth Sciences., 116C, 233–247.

    Article  Google Scholar 

  • Fakir, Y., & Razack, M. (2003). Hydrodynamic characterization of a Sahelian coastal aquifer using the ocean tide effect (Dridrate Aquifer, Morocco). Hydrological Sciences Journal, 48(3), 441–454.

    Article  Google Scholar 

  • Fakir, Y., El Mernissi, M., Kreuser, T., & Berjami, B. (2002). Natural tracerapproach to characterize groundwater in the coastal Sahel of Oualidia (Morocco). Environmental Geology, 43, 197–202.

    Article  CAS  Google Scholar 

  • Ferré, M. (1969). Hydrologie et hydrogéologie des Abda-Doukkala. Nancy: Thèse de Docteur Ingénieur. 407.

    Google Scholar 

  • Ferris J (1951) Cyclic fluctuations of water level as a basis for determining aquifer transmissibility. In: Assemblée générale de Bruxelles, tome II, 148–155. IAHS Publ. no. 33.

  • Fetter, C. W. (1994). Applied hydrogeology. New York: Macmillan College.

    Google Scholar 

  • Giuliano, A., & Manda, A. K. (2012). Wind driven salinity distributions in the Emily and Richardson Preyer Buckridge Coastal Reserve, Southern Alligator River Estuarine System, Eastern North Carolina. Geological Society of America Bulletin, 44, 59. Abstracts with Programs.

    Google Scholar 

  • Guo, Q., Li, H., Boufadel, M. C., Xia, Y., & Li, G. (2007). Tide-induced groundwater head fluctuation in coastal multi-layered aquifer systems with a submarine outlet-capping. Advances in Water Resources, 30(8), 1746–1755.

    Article  Google Scholar 

  • Guo, H., Jiao, J., & Li, H. (2010). Groundwater response to tidal fluctuation in a two-zone aquifer. Journal of Hydrology, 381, 364–371.

    Article  Google Scholar 

  • Hafid M, Tari G, Bouhadioui D, El Moussaid I, Echarfaoui H, Aït Salem A, Nahim M, Dakki M (2008) Continental evolution: the geology of Morocco structure, stratigraphy, and tectonics of the Africa-Atlantic-Mediterranean Triple Junction (chapitre 6). Lecture Notes in Earth Sciences. Editor: S. Bhattacharji, Brooklyn, H. J. Neugebauer, Bonn, J. Reitner, Göttingen, K. Stüwe, Graz. Springer-Verlag Berlin Heidelberg.

  • Herbert, G., Ayoub, N., Marsaleix, P., & Lyard, F. (2011). Signature of the coastal circulation variability in altimetric data in the southern Bay of Biscay during winter and fall 2004. Journal of Marine Systems, 88(2), 139–158.

    Article  Google Scholar 

  • Jacob, C. E. (1950). Flow of ground water. In H. Rouse (Ed.), Engineering hydraulics (pp. 321–386). Hoboken: Wiley.

    Google Scholar 

  • Jha, M. K., & Singh, A. (2014). Application of genetic algorithm technique to inverse modeling of tide–aquifer interaction. Environmental and Earth Sciences, 71(8), 3655–3672.

    Article  Google Scholar 

  • Jha, M. K., Kamii, Y., & Chikamori, K. (2003). On the estimation of phreatic aquifer parameters by the tidal response technique. Water Resources Management, 17(1), 68–83.

    Article  Google Scholar 

  • Jha, M. K., Namgial, D., Kamii, Y., & Peiffer, S. (2008). Hydraulic parameters of coastal aquifer systems by direct methods and an extended tide–aquifer interaction technique. Water Resources Management, 22(12), 1899–1923.

    Article  Google Scholar 

  • Kaid Rassou, K., Fakir, Y., Bahir, M., Zouari, K., & Marah, M. (2005). Origine et datation des eaux souterraines du bassin hydrologique de la lagune d’Oualidia. Estudios Geológicos, 61(3–6), 191–196.

    Google Scholar 

  • Langguth, H. R., & Voigt, R. (1980). Bohrbrunnen und Pegel. In Hydrogeologische Methoden (pp. 244–306). Springer Berlin Heidelberg.

  • Li H, Jiao JJ (2003) Review of analytical studies of tidal groundwater flow in coastal aquifer systems. In Proceedings of the International Symposium on Water Resources and the Urban Environment. Wuhan, PR China, Nov (pp. 9–10).

  • Li H, Li G, Cheng J, Boufadel MC. (2007). Tide‐induced head fluctuations in a confined aquifer with sediment covering its outlet at the sea floor. Water Resources Research, 43(3).

  • Millham, N. P., & Howes, B. L. (1995). A comparison of methods to determine K in a shallow coastal aquifer. Ground Water, 33(1), 49–57.

    Article  CAS  Google Scholar 

  • Nielsen, P. (1990). Tidal dynamics of the water table in beaches. Water Resources Research, 26(9), 2127–2134.

    Google Scholar 

  • Oulaaross Z (2009) Etude climatologique, hydrogéologique et géophysique du Sahel Côtier des Doukkala (Maroc). Apport de l’analyse statistique et de l’inversion des données géoélectriques à l’étude du biseau salé de la lagune de Sidi Moussa (Doctoral dissertation, Bordeaux 1).

  • Razack, M., Drogue, C., Romariz, C., & Almeida, C. (1980). Etude de l’effet de marée océanique sur un aquifère côtier (Miocène de l’Algarve, Portugal). Journal of Hydrology, 45, 57–69.

    Article  Google Scholar 

  • Ren, Y., Tang, Z., & Zhao, L. (2008). Tide‐induced groundwater head fluctuation in a coastal aquifer system with a submarine outcrop covered by a thin silt layer. Hydrological Processes, 22(5), 605–610.

    Article  Google Scholar 

  • Rotzoll, K., & El-Kadi, A. I. (2008). Estimating hydraulic properties of coastal aquifers using wave setup. Journal of Hydrology, 353, 201–213.

    Article  Google Scholar 

  • Rotzoll, K., Gingerich, S. B., Jenson, J. W., & El-Kadi, A. I. (2013). Estimating hydraulic properties from tidal attenuation in the Northern Guam Lens Aquifer, territory of Guam, USA. Hydrogeology Journal, 21(3), 643–654.

    Article  Google Scholar 

  • Schultz, G., & Ruppel, C. (2002). Constraints on hydraulic parameters and implications for groundwater flux across the upland-estuary interface. Journal of Hydrology, 260, 255–269.

    Article  Google Scholar 

  • Serfes, M. E. (1991). Determining the mean hydraulic gradient of ground water affected by tidal fluctuations. Ground Water, 29(4), 549–555.

    Article  Google Scholar 

  • Stramska, M., Kowalewska-Kalkowska, H., & Świrgoń, M. (2013). Seasonal variability in the Baltic Sea level. Oceanologia, 55(4), 787–807.

    Article  Google Scholar 

  • Su, N., Liu, F., & Anh, V. (2003). Tides as phase-modulated waves inducing periodic groundwater flow in coastal aquifers overlaying a sloping impervious base. Environmental Modelling & Software, 18(10), 937–942.

    Article  Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology. New York: Wiley.

    Google Scholar 

  • Trefry MG, Bekele E (2004) Structural characterization of an island aquifer via tidal methods. Water Resources Research, 40(1).

  • Trefry, M. G., & Johnson, C. D. (1998). Pumping test analysis for a tidally forced aquifer. Ground Water, 36, 427–433.

    Article  CAS  Google Scholar 

  • Vallejos, A., Sola, F., & Pulido-Bosch, A. (2015). Processes influencing groundwater level and the freshwater-saltwater interface in a coastal aquifer. Water Resources Management, 29(3), 679–697.

    Article  Google Scholar 

  • Xia, Y., Li, H., Boufadel, M. C., Guo, Q., & Li, G. (2007). Tidal wave propagation in a coastal aquifer: effects of leakages through its submarine outlet-capping and offshore roof. Journal of Hydrology, 337, 249–257.

    Article  Google Scholar 

  • Xun, Z., Chao, S., Ting, L., Ruige, C., Huan, Z., Jingbo, Z., & Qin, C. (2015). Estimation of aquifer parameters using tide-induced groundwater level measurements in a coastal confined aquifer. Environmental and Earth Sciences, 73(5), 2197–2204.

    Article  Google Scholar 

  • Zhou, X., Ruan, C., Yang, Y., Fang, B., & Ou, Y. (2006). Tidal effects of groundwater levels in the coastal aquifers near Beihai, China. Environmental Geology, 51, 517–525.

    Article  Google Scholar 

Download references

Acknowledgments

This study received financial support from Franco-Moroccan Mixed Committee (MA/08/191) in charge of partnership projects Hubert Curien Volubilis. Authors are very grateful to Mr. Jebbar Mohammed, the well owner, which agreed spontaneously to install the sensor in his well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Fadili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadili, A., Malaurent, P., Najib, S. et al. Investigation of groundwater behavior in response to oceanic tide and hydrodynamic assessment of coastal aquifers. Environ Monit Assess 188, 290 (2016). https://doi.org/10.1007/s10661-016-5287-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5287-2

Keywords

Navigation