Skip to main content

Advertisement

Log in

Using recent high-frequency surveys to reconstitute 35 years of organic carbon variations in a eutrophic lowland river

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Concentrations of dissolved and particulate organic carbon (DOC and POC), total suspended solids (TSS), were measured daily, and phytoplankton pigments (chlorophyll-a and pheopigments) were measured every 3 days at three strategic stations along the eutrophic Loire River between November 2011 and November 2013 marked by a high annual and seasonal variability in hydrological regimes. This unique high-frequency dataset allowed to determine the POC origin (autochthonous or allochthonous). Some strong relationships were evidenced between POC, total pigments and TSS and were tested on a long-term database with a lower frequency (monthly data) to reconstitute unmeasured algal and detrital POC concentrations and estimate annual total organic carbon (TOC) fluxes from 1980 onwards. The results were subjected to only ≈25 % uncertainty and showed that the annual TOC fluxes at the outlet of the Loire River decreased from 520 103 tC year−1 (i.e. 4.7 t km−2 year−1) in the early 1990s to 150 103 tC year−1 (i.e. 1.4 t km−2 year−1) in 2012. Although DOC always dominates, the autochthonous POC represented 35 % of the TOC load at the basin outlet by the end of the 1980s and declined to finally represent 15 % only of the TOC. The control of phosphorus direct inputs and the invasion by Corbicula clams spp. which both occurred since the early 1990s probably highly reduced the development of phytoplankton. Consequently, the autochthonous POC contribution declined and TSS concentrations in summertime significantly decreased as well as a result of both less phytoplankton and less calcite precipitation. At the present time, at least 75 % of the POC has allochthonous origins in the upper Middle Loire but downstream, autochthonous POC dominates during summer phytoplanktonic blooms when total pigments concentrations reach up to 70 μg L−1 (equivalent to 75 % of the total POC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abonyi A. (2014). Phytoplankton functional group composition along the River Loire (France), Ph.D. thesis . Hungary: University of Pannonia, Department of Limnology.

  • Abril, G., Nogueira, M., Etcheber, H., et al. (2002). Behaviour of organic carbon in nine contrasting European estuaries. Estuarine, Coastal and Shelf Science, 54, 241–262. doi:10.1006/ecss.2001.0844.

    Article  CAS  Google Scholar 

  • Amann, T., Weiss, A., & Hartmann, J. (2012). Carbon dynamics in the freshwater part of the Elbe estuary, Germany: Implications of improving water quality. Estuarine, Coastal and Shelf Science, 107, 112–121. doi:10.1016/j.ecss.2012.05.012.

    Article  CAS  Google Scholar 

  • Arheimer, B., Andréasson, J., Fogelberg, S., et al. (2005). Climate change impact on water quality: model results from southern Sweden. Ambio, 34, 559–566.

    Article  Google Scholar 

  • Barlocher, F., Seena, S., Wilson, K. P., & Williams, D. D. (2008). Raised water temperature lowers diversity of hyporheic aquatic hyphomycetes. Freshwater Biology, 53, 368–379. doi:10.1111/j.1365-2427.2007.01899.x.

    Google Scholar 

  • Battin, T. J., Kaplan, L. A., Findlay, S., et al. (2009). Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 2, 595–595. doi:10.1038/ngeo602.

    Article  CAS  Google Scholar 

  • Billen, G., Cauwet, G., Dessery, S., et al. (1986). Origines et comportement du carbone organique dans l’estuaire de la Loire. Rapp P-v Réun Cons int Explor Mer, 186, 375–391.

    CAS  Google Scholar 

  • Bouraoui, F., & Grizzetti, B. (2011). Long term change of nutrient concentrations of rivers discharging in European seas. The Science of the Total Environment, 409, 4899–916. doi:10.1016/j.scitotenv.2011.08.015.

    Article  CAS  Google Scholar 

  • Brancotte, V., & Vincent, T. (2002). L’invasion du réseau hydrographique français par les mollusques Corbicula Spp. Modalité de colonisation et rôle prépondérant des canaux de navigation. Bulletin Francais de la Peche et de la Pisciculture, 365(366), 325–337.

    Article  Google Scholar 

  • Bustillo, V., Moatar, F., Ducharne, A., et al. (2014). A multimodel comparison for assessing water temperatures under changing climate conditions via the equilibrium temperature concept: Case study of the Middle Loire River, France. Hydrological Processes, 28, 1507–1524. doi:10.1002/hyp.9683.

    Article  Google Scholar 

  • Carignan, R., & Kalff, J. (1980). Phosphorus sources for aquatic weeds: water or sediments? Science, 207, 987–989. doi:10.1126/science.207.4434.987.

    Article  CAS  Google Scholar 

  • Coynel, A., Etcheber, H., Abril, G., et al. (2005a). Contribution of small mountainous rivers to particulate organic carbon input in the Bay of Biscay. Biogeochemistry, 74, 151–171. doi:10.1007/s10533-004-3362-1.

    Article  CAS  Google Scholar 

  • Coynel, A., Seyler, P., Etcheber, H., et al. (2005b). Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River. Global Biogeochemical Cycles, 19, 1–17. doi:10.1029/2004GB002335.

    Article  CAS  Google Scholar 

  • Dessery S., Dulac C., Laurenceau J. M., Meybeck M. (1984). Evolution du carbone organique «algal» et «détritique» dans trois rivières du bassin parisien. Arch Hydrobiol, 235–260.

  • Etcheber, H., Taillez, A., Abril, G., et al. (2007). Particulate organic carbon in the estuarine turbidity maxima of the Gironde, Loire and Seine estuaries: origin and lability. Hydrobiologia, 588, 245–259. doi:10.1007/s10750-007-0667-9.

    Article  CAS  Google Scholar 

  • floury, m., delattre, c., ormerod, s., & souchon, y. (2012). Global versus local change effects on a large european river. the science of the total environment, 441, 220–229. doi:10.1016/j.scitotenv.2012.09.051.

    Article  CAS  Google Scholar 

  • Gao, Q., Tao, Z., Shen, C., et al. (2002). Riverine organic carbon in the Xijiang River (South China): Seasonal variation in content and flux budget. Environmental Geology, 41, 826–832. doi:10.1007/s00254-001-0460-4.

    Article  CAS  Google Scholar 

  • Grimvall, A., Von Brömssen, C., & Lindström, G. (2014). Using process-based models to filter out natural variability in observed concentrations of nitrogen and phosphorus in river water. Environmental Monitoring and Assessment, 186, 5135–5152. doi:10.1007/s10661-014-3765-y.

    Article  CAS  Google Scholar 

  • Grosbois, C., Négrel, P., Grimaud, D., & Fouillac, C. (2001). An overview of dissolved and suspended matter fluxes in the Loire River Basin: natural and anthropogenic inputs. Aquat Geochemistry, 7, 81–105.

    Article  CAS  Google Scholar 

  • Grosbois, C., Meybeck, M., Lestel, L., et al. (2012). Severe and contrasted polymetallic contamination patterns (1900–2009) in the Loire River sediments (France). The Science of the Total Environment, 435–436, 290–305. doi:10.1016/j.scitotenv.2012.06.056.

    Article  CAS  Google Scholar 

  • Halliday, S. J., Wade, A. J., Skeffington, R. A., et al. (2012). An analysis of long-term trends, seasonality and short-term dynamics in water quality data from Plynlimon, Wales. The Science of the Total Environment, 434, 186–200. doi:10.1016/j.scitotenv.2011.10.052.

    Article  CAS  Google Scholar 

  • Hardenbicker, P., Rolinski, S., Weitere, M., & Fischer, H. (2014). Contrasting long-term trends and shifts in phytoplankton dynamics in two large rivers. International Review of Hydrobiology, 99, 326–334. doi:10.1002/iroh.201301680.

    Article  Google Scholar 

  • Hein, T., Baranyi, C., Herndl, G. J., et al. (2003). Allochthonous and autochthonous particulate organic matter in floodplains of the River Danube : the importance of hydrological connectivity. Freshwater Biology, 48, 220–232.

    Article  Google Scholar 

  • Hood J. (2012). The role of submersed macrophytes in river eutrophication and biogeochemical nutrient cycling, Ph.D. thesis. Canada: University of Waterloo.

  • Hope, D., Billett, M. F., & Cresser, M. S. (1994). A review of the export of carbon in river water: fluxes and processes. Environmental Pollution, 84, 301–324.

    Article  CAS  Google Scholar 

  • Howden, N. J. K., Burt, T. P., Worrall, F., et al. (2010). Nitrate concentrations and fluxes in the River Thames over 140 years (1868–2008): are increases irreversible? Hydrological Processes, 24, 2657–2662. doi:10.1002/hyp.7835.

    Article  CAS  Google Scholar 

  • Istvánovics, V., & Honti, M. (2012). Efficiency of nutrient management in controlling eutrophication of running waters in the Middle Danube Basin. Hydrobiologia, 686, 55–71.

    Article  CAS  Google Scholar 

  • Istvánovics, V., Honti, M., Kovács, Á., et al. (2014). Phytoplankton growth in relation to network topology: time-averaged catchment-scale modelling in a large lowland river. Freshwater Biology, 59, 1856–1871. doi:10.1111/fwb.12388.

    Article  Google Scholar 

  • Latapie, A., Camenen, B., Rodrigues, S., et al. (2014). Assessing channel response of a long river influenced by human disturbance. CATENA, 121, 1–12. doi:10.1016/j.catena.2014.04.017.

    Article  Google Scholar 

  • Lehmann, A., & Rode, M. (2001). Long-term behaviour and cross-correlation water quality analysis of the River Elbe, Germany. Water Research, 35, 2153–60.

    Article  CAS  Google Scholar 

  • Ludwig, W., & Probst, J. L. (1996). Predicing the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles, 10, 23–41.

    Article  CAS  Google Scholar 

  • Lund, J. W. G., & Talling, J. F. (1957). Botanical limnological methods with special reference to the algae. Botanical Review, 23, 489–583. doi:10.1007/BF02870144.

    Article  Google Scholar 

  • Meybeck, M. (2005). Origins and behaviours of carbon species in world rivers. In E. Roose, R. Lal, C. Feller, et al. (Eds.), Erosion and Carbon dynamics (pp. 209–238). Boca R: CRC.

    Google Scholar 

  • Meybeck, M., Cauwet, G., Dessery, S., et al. (1988). Nutrients (organic C, P, N, Si) in the eutrophic River Loire (France) and its estuary. Estuarine, Coastal and Shelf Science, 27, 595–624.

    Article  CAS  Google Scholar 

  • Minaudo, C., Meybeck, M., Moatar, F., et al. (2015). Eutrophication mitigation in rivers: 30 years of trends in spatial and seasonal patterns of biogeochemistry of the Loire River (1980–2012). Biogeosciences, 12, 2549–2563. doi:10.5194/bg-12-2549-2015.

    Article  CAS  Google Scholar 

  • Moatar, F., & Gailhard, J. (2006). Water temperature behaviour in the River Loire since 1976 and 1881. Comptes Rendus Geosci, 338, 319–328. doi:10.1016/j.crte.2006.02.011.

    Article  Google Scholar 

  • Moatar, F., Person, G., Meybeck, M., et al. (2006). The influence of contrasting suspended particulate matter transport regimes on the bias and precision of flux estimates. The Science of the Total Environment, 370, 515–531. doi:10.1016/j.scitotenv.2006.07.029.

    Article  CAS  Google Scholar 

  • Moatar, F., Meybeck, M., Raymond, S., et al. (2013). River flux uncertainties predicted by hydrological variability and riverine material behaviour. Hydrological Processes, 27, 3535–3546. doi:10.1002/hyp.9464.

    Article  Google Scholar 

  • Neal, C. (2001). The potential for phosphorus pollution remediation by calcite precipitation in UK freshwaters. Hydrology and Earth System Sciences, 5, 119–131. doi:10.5194/hess-5-119-2001.

    Article  Google Scholar 

  • Némery, J., Mano, V., Coynel, A., et al. (2013). Carbon and suspended sediment transport in an impounded alpine river (Isère, France). Hydrological Processes, 27, 2498–2508. doi:10.1002/hyp.9387.

    Article  Google Scholar 

  • Oudin, L. C., Lair, N., Leitão, M., et al. (2009). Rivers of Europe (Eds Tockner K. & C.T. Robinson). London: British Library.

    Google Scholar 

  • Pigneur, L.-M., Falisse, E., Roland, K., et al. (2014). Impact of invasive Asian clams, Corbicula spp., on a large river ecosystem. Freshwater Biology, 59, 573–583. doi:10.1111/fwb.12286.

    Article  Google Scholar 

  • Raymond, S., Moatar, F., Meybeck, M., & Bustillo, V. (2013). Choosing methods for estimating dissolved and particulate riverine fluxes from monthly sampling. Hydrological Sciences Journal, 58, 1326–1339. doi:10.1080/02626667.2013.814915.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., & Descy, J.-P. (1996). The production, biomass and structure of phytoplankton in large rivers. Archiv für Hydrobiologie, Supplement, 113, 161–187.

    Google Scholar 

  • Rott, E. (1981). Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift für Hydrologie, 43, 34–62. doi:10.1007/BF02502471.

    Google Scholar 

  • Schnebelen, N., Couturier, A., Bourennane, H., et al. (2002). Impacts of alternative agricultural practices on the reduction of nitric pollution in the Beauce limestone aquifer (France) (17th WCSS, p. 1229–1–1229–8).

    Google Scholar 

  • Slaets, J. I. F., Schmitter, P., Hilger, T., et al. (2014). A turbidity-based method to continuously monitor sediment, carbon and nitrogen flows in mountainous watersheds. Journal of Hydrology, 513, 45–57. doi:10.1016/j.jhydrol.2014.03.034.

    Article  CAS  Google Scholar 

  • Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie, 9, 1–38.

    Google Scholar 

  • Verity, P. G. (2002). A Decade of Change in the Skidaway River Estuary. II. Particulate Organic Carbon, Nitrogen, and Chlorophyll-a. Estuaries, 25, 961–975.

    Article  CAS  Google Scholar 

  • Vohmann, A., Borcherding, J., Kureck, A., et al. (2010). Strong body mass decrease of the invasive clam Corbicula fluminea during summer. Biological Invasions, 12, 53–64. doi:10.1007/s10530-009-9429-0.

    Article  Google Scholar 

  • Wang, X.-C., Chen, R. F., & Gardner, G. B. (2004). Sources and transport of dissolved and particulate organic carbon in the Mississippi River estuary and adjacent coastal waters of the northern Gulf of Mexico. Marine Chemistry, 89, 241–256. doi:10.1016/j.marchem.2004.02.014.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. (1984). Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bulletin of Marine Science, 35, 503–509.

    Google Scholar 

  • Whitehead, P. G., Wilby, R., Battarbee, R., et al. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 54, 101–123. doi:10.1623/hysj.54.1.101.

    Article  Google Scholar 

  • Wysocki, L. A., Bianchi, T. S., Powell, R. T., & Reuss, N. (2006). Spatial variability in the coupling of organic carbon, nutrients, and phytoplankton pigments in surface waters and sediments of the Mississippi River plume. Estuarine, Coastal and Shelf Science, 69, 47–63. doi:10.1016/j.ecss.2006.03.022.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Data used in this study was funded by the French electricity company “Electricité de France”, “l’Etablissement Public Loire”, FEDER European funds and by the Loire River Basin Agency (AELB). This study would not have been possible without the great efforts made by the different persons who sampled the Loire every day (Yannick Bennet, André Dubois, Hervé Couet, Laurence Lanctin, Didier Louvel), and those who made the countless analysis (Laureline Gorse, Eric Imbert, Andras Abonyi, Anne-Marie Lançon and Maria Leitao).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Minaudo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minaudo, C., Moatar, F., Coynel, A. et al. Using recent high-frequency surveys to reconstitute 35 years of organic carbon variations in a eutrophic lowland river. Environ Monit Assess 188, 41 (2016). https://doi.org/10.1007/s10661-015-5054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5054-9

Keywords

Navigation