Skip to main content

Advertisement

Log in

Acid deposition in the Athabasca Oil Sands Region: a policy perspective

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Industrial emissions of sulphur (S) and nitrogen (N) to the atmosphere associated with the oil sands industry in north-eastern Alberta are of interest as they represent the largest localized source in Canada (with potential for future growth) and the region features acid-sensitive upland terrain. Existing emission management policy for the Regional Municipality of Wood Buffalo, where the industry is located, is based on a time-to-effect approach that relies on dynamic model simulations of temporal changes in chemistry and features highly protective chemical criteria. In practice, the policy is difficult to implement and it is unlikely that a scientifically defensible estimate of acidification risk can be put forward due to the limitations primarily associated with issues of scale, chemical endpoint designation (selection of chemical limit for ecosystem protection from acidification) and data availability. A more implementable approach would use a steady-state critical load (CL) assessment approach to identify at-risk areas. The CL assessment would consider areas of elevated acid deposition associated with oil sands emissions rather than targeted political jurisdictions. Dynamic models should only be (strategically) used where acidification risk is identified via CL analysis, in order to characterize the potential for acidification-induced changes that can be detrimental to sensitive biota within the lifespan of the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • CCME (1998). The Canada-Wide Acid Rain Strategy for Post-2000: strategy and supporting document (p. 20). Halifax: Canadian Council of Ministers of the Environment.

    Google Scholar 

  • Cosby, B. J., Hornberger, G. M., Galloway, J. N., & Wright, R. F. (1985). Modeling the effects of acid deposition: assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resources Research, 21(1), 51–63.

    Article  CAS  Google Scholar 

  • Cronan, C. S., & Grigal, D. F. (1995). Use of calcium/aluminium ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24, 209–226.

    Article  CAS  Google Scholar 

  • Curtis, C. J., Flower, R., Rose, N., Shilland, J., Simpson, G. L., Turner, S., et al. (2010). Palaeolimnological assessment of lake acidification and environmental change in the Athabasca Oil Sands Region, Alberta. Journal of Limnology, 69(Suppl. 1), 92–104.

    Article  Google Scholar 

  • Environment Canada (2004). Canadian acid deposition science assessment. In Meteorological Service of Canada (Ed.), (pp. 437). Downsview, ON.

  • ESSA Technologies, Laurence, J., Risk Sciences International, Trent University, & Trinity Consultants (2014). Kitimat Airshed Emissions Effects Assessment. (pp. 205). Smithers, BC: BC Ministry of Environment. http://www.bcairquality.ca/airsheds/docs/ESSA-Kitimat-Airshed-Report_20140425.pdf

  • Forsius, M., Posch, M., Aherne, J., Reinds, G. J., Christensen, J., & Hole, L. (2010). Assessing the impacts of long-range sulfur and nitrogen deposition on Arctic and sub-Arctic ecosystems. Ambio, 39, 136–147. doi:10.1007/s13280-010-0022-7.

    Article  CAS  Google Scholar 

  • Hettelingh, J.-P., Posch, M., Slootweg, J., Reinds, G. J., Spranger, T., & Tarrason, L. (2007). Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. Water, Air, & Soil Pollution: Focus, 7, 379–384.

    Article  CAS  Google Scholar 

  • Kelly, E. N., Short, J. W., Schindler, D. W., Hodson, P. V., Ma, M., Kwan, A. K., et al. (2009). Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries. Proceedings of the National Academy of Sciences, 106(52), 22346–22351. doi:10.1073/pnas.0912050106.

    Article  CAS  Google Scholar 

  • Kelly, E. N., Schindler, D. W., Hodson, P. V., Short, J. W., Radmanovich, R., & Nielsen, C. C. (2010). Oils sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries. Proceedings of the National Academy of Sciences, 107(37), 16178–16183. doi:10.1073/pnas.1008754107.

    Article  CAS  Google Scholar 

  • Kurek, J., Kirk, J. L., Muir, D. C. G., Wang, X., Evans, M. S., & Smol, J. P. (2013). Legacy of a half century of Athabasca oil sands development recorded by lake ecosystems. Proceedings of the National Academy of Sciences, 110(5), 1761–1766. doi:10.1073/pnas.1217675110.

    Article  CAS  Google Scholar 

  • Landis, M. S., Pancras, J. P., Graney, J. R., Stevens, R. K., Percy, K. E., & Krupa, S. (2012). Receptor modeling of epiphytic lickens to elucidate the sources and spatial distribution of inorganic air pollution in the Athabasca Oil Sands Region. In K. E. Percy (Ed.), Alberta Oil Sands (Vol. 11, pp. 427–467, Developments in Environmental Science): Elsevier.

  • Laxton, D. L., Watmough, S. A., & Aherne, J. (2012). Nitrogen cycling in Pinus banksiana and Populus tremuloides stands in the Athabasca Oil Sands Region, Alberta, Canada. Water, Air, and Soil Pollution, 223, 1–13. doi:10.1007/s11270-011-0833-6.

    Article  CAS  Google Scholar 

  • MacDougall, G., Aherne, J., & Watmough, S. A. (2009). Impacts of acid deposition at Plastic Lake: forecasting chemical recovery using a Bayesian calibration and uncertainty propagation approach. Hydrology Research, 40(2–3), 249–260.

    Article  CAS  Google Scholar 

  • McLinden, C. A., Fioletov, V., Boersma, K. F., Krotkov, N., Sioris, C. E., Veefkind, J. P., et al. (2012). Air quality over the Canadian oil sands: a first assessment using satellite observations. Geophysical Research Letters, 39(L04804), 1–8. doi:10.1029/2011GL050273.

    Google Scholar 

  • Moiseenko, T. (1994). Acidification and critical load in surface waters: Kola, northern Russia. Ambio, 23, 418–424.

    Google Scholar 

  • Nilsson, J., & Grennfelt, P. (1988). Critical loads for sulfur and nitrogen (p. 418). Miljorapport: Nordic Council of Ministers.

    Google Scholar 

  • Ouimet, R., Arp, P. A., Watmough, S. A., Aherne, J., & Demerchant, I. (2006). Determination and mapping critical loads of acidity and exceedances for upland forest soils in Eastern Canada. Water, Air, and Soil Pollution, 172, 57–66.

    Article  CAS  Google Scholar 

  • Reuss, J. O., & Johnson, D. W. (1985). Acid deposition and the acidification of soils and waters (Vol. 59, Ecological studies). New York: Springer-Verlag

  • Rooney, R. C., Bayley, S. E., & Schindler, D. W. (2012). Oil sands mining and reclamation cause massive loss of peatland and stored carbon. Proceedings of the National Academy of Sciences, 109(13), 4933–4937. doi:10.1073/pnas.1117693108.

    Article  CAS  Google Scholar 

  • Shewchuk, S. R. (1982). An acid deposition perspective for northeastern Alberta and northern Saskatchewan. Water, Air, and Soil Pollution, 18, 413–419.

    Article  CAS  Google Scholar 

  • Stringham, G. (2012). Energy developments in Canada’s oil sands. In K. E. Percy (Ed.), Alberta Oil Sands (Vol. 11, pp. 19–34, Developments in Environmental Science): Elsevier.

  • Sverdrup, H., & De Vries, W. (1994). Calculating critical loads for acidity with the simple mass balance method. Water, Air, and Soil Pollution, 72, 143–162.

    Article  CAS  Google Scholar 

  • UBA (2004). Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends. Berlin: Umweltbundesamt.

    Google Scholar 

  • Watmough, S. A., Whitfield, C. J., & Fenn, M. E. (2014). The importance of atmospheric base cation deposition for preventing soil acidification in the Athabasca Oil Sands Region of Canada. Science of the Total Environment, 493, 1–11. doi:10.1016/j.scitotenv.2014.05.110.

    Article  CAS  Google Scholar 

  • Whitfield, C. J., Aherne, J., & Watmough, S. A. (2009). Modeling soil acidification in the Athabasca Oil Sands Region, Alberta, Canada. Environmental Science & Technology, 43, 5844–5850.

    Article  CAS  Google Scholar 

  • Whitfield, C. J., Aherne, J., Cosby, B. J., & Watmough, S. A. (2010a). Modelling boreal lake catchment response to anthropogenic acid deposition. Journal of Limnology, 69(Suppl. 1), 135–146.

    Article  Google Scholar 

  • Whitfield, C. J., Aherne, J., Watmough, S. A., & McDonald, M. (2010b). Estimating the sensitivity of forest soils to acid deposition in the Athabasca Oil Sands Region, Alberta. Journal of Limnology, 69(Suppl. 1), 201–208.

    Article  Google Scholar 

  • Whitfield, C. J., Watmough, S. A., & Aherne, J. (2011). Evaluation of elemental depletion weathering rate estimation methods on acid-sensitive soils of north-eastern Alberta, Canada. Geoderma, 166, 189–197.

    Article  CAS  Google Scholar 

  • Wolniewicz, M. B., & Aherne, J. (2010). Development of an approach to assess uncertainty in terrestrial critical load exceedance (pp. 1–22). Halifax: Canadian Council of Ministers of the Environment.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin J. Whitfield.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitfield, C.J., Watmough, S.A. Acid deposition in the Athabasca Oil Sands Region: a policy perspective. Environ Monit Assess 187, 771 (2015). https://doi.org/10.1007/s10661-015-4979-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4979-3

Keywords

Navigation