Skip to main content
Log in

Identifying avian sources of faecal contamination using sterol analysis

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66 % concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araujo, S., Henriques, I. S., Leandro, S. M., Alves, A., Pereira, A., & Correia, A. (2014). Gulls identified as major source of fecal pollution in coastal waters: a microbial source tracking study. Science of the Total Environment, 470–471, 84–91.

    Article  Google Scholar 

  • Bonnedahl, J., Hernandez, J., Stedt, J., Waldenstrom, J., Olsen, B., & Drobni, M. (2014). Extended-spectrum beta-lactamases in Escherichia coli and klebsiella pneumoniae in gulls, Alaska, USA. [letter]. Emerging Infectious Diseases, 20, 5.

    Article  Google Scholar 

  • Broman, T., Waldenstrom, J., Dahlgren, D., Carlsson, I., Eliasson, I., & Olsen, B. (2004). Diversities and similarities in PFGE profiles of Campylobacter jejuni isolated from migrating birds and humans. Journal of Applied Microbiology, 96(4), 834–843.

    Article  CAS  Google Scholar 

  • Brown, J. D., Stallknecht, D. E., Beck, J. R., Suarez, D. L., & Swayne, D. E. (2006). Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses. Emerging Infectious Diseases, 12(11), 1663–1670.

    Article  CAS  Google Scholar 

  • Bull, I. D., Lockheart, M. J., Elhmmali, M. M., Roberts, D. J., & Evershed, R. P. (2002). The origin of faeces by means of biomarker detection. Environment International, 27(8), 647–654.

    Article  CAS  Google Scholar 

  • Derrien, M., Jardé, E., Gruau, G. r., & Pierson-Wickmann, A.-C. (2011). Extreme variability of steroid profiles in cow feces and pig slurries at the regional scale: implications for the use of steroids to specify fecal pollution sources in waters. Journal of Agricultural and Food Chemistry, 59(13), 7294–7302.

    Article  CAS  Google Scholar 

  • Devane, M., Saunders, D., & Gilpin, B. (2006). Faecal sterols and fluorescent whiteners as indicators of the source of faecal contamination. Chemistry in New Zealand, 70(3), 74–77.

    CAS  Google Scholar 

  • Devane, M., Robson, B., Nourozi, F., Scholes, P., & Gilpin, B. J. (2007). A PCR marker for detection in surface waters of faecal pollution derived from ducks. Water Research, 41(16), 3553–3560.

    Article  CAS  Google Scholar 

  • Devane, M., Robson, B., Nourozi, F., Wood, D., & Gilpin, B. J. (2013). Distinguishing human and possum faeces using PCR markers. Journal of Water and Health, 11(3), 397–409.

    Article  CAS  Google Scholar 

  • Ebentier, D. L., Hanley, K. T., Cao, Y., Badgley, B. D., Boehm, A. B., Ervin, J. S., et al. (2013). Evaluation of the repeatability and reproducibility of a suite of qPCR-based microbial source tracking methods. Water Research, 47(18), 6839–6848.

    Article  CAS  Google Scholar 

  • Fogarty, L. R., Haack, S. K., Wolcott, M. J., & Whitman, R. L. (2003). Abundance and characteristics of the recreational water quality indicator bacteria Escherichia coli and enterococci in gull faeces. Journal of Applied Microbiology, 94(5), 865–878.

    Article  CAS  Google Scholar 

  • Gilbert, M., Xiao, X., Domenech, J., Lubroth, J., Martin, V., & Slingenbergh, J. (2006). Anatidae migration in the western palearctic and spread of highly pathogenic avian influenza H5N1 virus. Emerging Infectious Diseases, 12(11), 1650–1656.

    Article  Google Scholar 

  • Green, H. C., Dick, L. K., Gilpin, B., Samadpour, M., & Field, K. G. (2012). Genetic markers for rapid PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in water. Applied and Environmental Microbiology, 78(2), 503–510.

    Article  CAS  Google Scholar 

  • Gregor, J., Garrett, N., Gilpin, B., Randall, C., & Saunders, D. (2002). Use of classification and regression tree (CART) analysis with chemical faecal indicators to determine sources of contamination. New Zealand Journal of Marine and Freshwater Research, 36, 387–398.

    Article  CAS  Google Scholar 

  • Grimault, J. O., Fernandez, P., Bayona, J. M., & Albaiges, J. (1990). Assessment of faecal sterols and ketones as indicators of urban sewage inputs to coastal waters. Enviromental Science and Technology, 24, 357–363.

    Article  Google Scholar 

  • Hassett, J. P., Jr., & Lee, G. F. (1977). Sterols in natural water and sediment. Water Research, 11(11), 983–989.

    Article  CAS  Google Scholar 

  • Isobe, K. O., Tarao, M., Zakaria, M. P., Chiem, N. H., le Minh, Y., & Takada, H. (2002). Quantitative application of fecal sterols using gas chromatography–mass spectrometry to investigate fecal pollution in tropical waters: western Malaysia and Mekong Delta, Vietnam. Environmental Science and Technology, 36(21), 4497–4507.

    Article  CAS  Google Scholar 

  • Kinzelman, J., Kay, D., & Pond, K. (2011). Relating MST Results to Fecal Indicator Bacteria, Pathogens, and Standards. In C. Hagedorn, A. R. Blanch, & V. J. Harwood (Eds.), Microbial Source Tracking: Methods, Applications, and Case Studies (pp. 337–359): Springer.

  • Kobayashi, A., Sano, D., Hatori, J., Ishii, S., & Okabe, S. (2013). Chicken- and duck-associated Bacteroides-Prevotella genetic markers for detecting fecal contamination in environmental water. Applied Microbiology and Biotechnology, 97(16), 7427–7437.

    Article  CAS  Google Scholar 

  • Lee, C., Marion, J. W., & Lee, J. (2013). Development and application of a quantitative PCR assay targeting Catellicoccus marimammalium for assessing gull-associated fecal contamination at Lake Erie beaches. [Article]. Science of the Total Environment, 454, 1–8.

    Article  Google Scholar 

  • Leeming, R., & Nichols, P. D. (1998). Determination of the sources and distribution of sewage and pulp-fibre-derived pollution in the Derwent Estuary, Tasmania, using sterol biomarkers. Marine and Freshwater Research, 49(1), 7–17.

    Article  CAS  Google Scholar 

  • Leeming, R., Ball, A., Ashbolt, N., & Nichols, P. (1996). Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Research, 30, 2893–2900.

    Article  CAS  Google Scholar 

  • Leeming, R., Nichols, P. D., & Ashbolt, N. J. (1998). Distinguishing sources of faecal pollution in Australian Inland and coastal water using sterol biomarkers and microbial faecal indicators. (pp. 1–45): Water services association of Australia.

  • Lu, J., Ryu, H., Vogel, J., Santo Domingo, J., & Ashbolt, N. J. (2013). Molecular detection of Campylobacter spp. and fecal indicator bacteria during the northern migration of sandhill cranes (Grus canadensis) at the central Platte River. Applied and Environmental Microbiology, 79(12), 3762–3769.

    Article  CAS  Google Scholar 

  • Martin, W. J., Subbiah, M. T. R., Kottke, B. A., Birk, C. C., & Naylor, M. C. (1973). Nature of fecal sterols and intestinal bacterial flora. Lipids, 8, 208.

    Article  CAS  Google Scholar 

  • Ministry for the Environment (2003). Microbiological Water Quality guidelines for Marine and Freshwater Recreational Areas. (pp. 155). New Zealand.

  • Moriarty, E. M., Karki, N., Mackenzie, M., Sinton, L. W., Wood, D. R., & Gilpin, B. J. (2011). Faecal indicators and pathogens in selected New Zealand waterfowl. New Zealand Journal of Marine and Freshwater Research, 45(4), 679–688.

    Article  Google Scholar 

  • Mudge, S. M., & Norris, C. E. (1997). Lipid biomarkers in the Conwy estuary (North Wales, U.K.): a comparison between fatty alcohols and sterols. Marine Chemistry, 57(1–2), 61.

    Article  CAS  Google Scholar 

  • Muirhead, R. W., Davies-Colley, R. J., Donnison, A. M., & Nagels, J. W. (2004). Faecal bacteria yields in artificial flood events: quantifying in-stream stores. Water Research, 38(5), 1215–1224.

    Article  CAS  Google Scholar 

  • Murphy, J., Devane, M. L., Robson, B., & Gilpin, B. J. (2005). Genotypic characterization of bacteria cultured from duck faeces. Journal of Applied Microbiology, 99(2), 301–309.

    Article  CAS  Google Scholar 

  • Nash, D., Leeming, R., Clemow, L., Hannah, M., Halliwell, D., & Allen, D. (2005). Quantitative determination of sterols and other alcohols in overland flow from grazing land and possible source materials. Water Research, 39(13), 2964–2978.

    Article  CAS  Google Scholar 

  • Nishimura, M., & Koyama, T. (1977). The occurrence of stanols in various living organisms and the behaviour of sterols in contemporary sediments. Geochimica et Cosmochimica Acta, 41, 379–385.

    Article  CAS  Google Scholar 

  • Refsum, T., Handeland, K., Baggesen, D. L., Holstad, G., & Kapperud, G. (2002). Salmonellae in Avian Wildlife in Norway from 1969 to 2000. Applied and Environmental Microbiology, 68(11), 5595–5599.

    Article  CAS  Google Scholar 

  • Ryu, H., Grond, K., Verheijen, B., Elk, M., Buehler, D. M., & Santo Domingo, J. W. (2014). Intestinal microbiota and species diversity of Campylobacter and Helicobacter spp. in migrating shorebirds in Delaware Bay. Applied and Environmental Microbiology, 80(6), 1838–1847.

    Article  Google Scholar 

  • Shah, V. G., Dunstan, R. H., Geary, P. M., Coombes, P., Roberts, T. K., & Von Nagy-Felsobuki, E. (2007). Evaluating potential applications of faecal sterols in distinguishing sources of faecal contamination from mixed faecal samples. Water Research, 41(16), 3691–3700.

    Article  CAS  Google Scholar 

  • Sinton, L. W., Finlay, R. K., & Hannah, D. J. (1998). Distinguishing human from animal faecal contamination in water: a review. New Zealand Journal of Marine and Freshwater Research, 32, 323–348.

    Article  Google Scholar 

  • Slodkowicz-Kowalska, A., Graczyk, T. K., Tamang, L., Jedrzejewski, S., Nowosad, A., Zduniak, P., et al. (2006). Microsporidian species known to infect humans are present in aquatic birds: implications for transmission via water? Applied and Environmental Microbiology, 72(7), 4540–4544.

    Article  CAS  Google Scholar 

  • Soller, J. A., Schoen, M. E., Bartrand, T., Ravenscroft, J. E., & Ashbolt, N. J. (2010). Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Research, 44(16), 4674–4691.

    Article  CAS  Google Scholar 

  • Subbiah, M. T., Kottke, B. A., & Zollman, P. E. (1972). Fecal sterols of some avian species. Comparative Biochemistry and Physiology. B, 41(4), 695–704.

    CAS  Google Scholar 

  • Tyagi, P., Edwards, D., & Coyne, M. (2008). Use of sterol and bile acid biomarkers to identify domesticated animal sources of fecal pollution. Water, Air, and Soil Pollution, 187(1–4), 263–274.

    CAS  Google Scholar 

  • Waldenstrom, J., Broman, T., Carlsson, I., Hasselquist, D., Achterberg, R. P., Wagenaar, J. A., et al. (2002). Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Applied and Environmental Microbiology, 68(12), 5911–5917.

    Article  CAS  Google Scholar 

  • Wallace, J. S., Cheasty, T., & Jones, K. (1997). Isolation of Vero cytotoxin-producing Escherichia coli O157 from wild birds. Journal of Applied Microbiology, 82(3), 399–404.

    Article  CAS  Google Scholar 

  • Walters, S. P., & Field, K. G. (2006). Persistence and growth of fecal Bacteroidales assessed by bromodeoxyuridine immunocapture. Applied and Environmental Microbiology, 72(7), 4532–4539.

    Article  CAS  Google Scholar 

  • Whitman, R., Byappanahalli, M., Spoljaric, A. M., Przybyla-Kelly, K., Shively, D. A., & Nevers, M. B. (2014). Evidence for free-living Bacteroides in Cladophora aong the shores of the Great Lakes. Aquatic Microbial Ecology, 72, 117–126.

    Article  Google Scholar 

  • Yakirevich, A., Pachepsky, Y. A., Guber, A. K., Gish, T. J., Shelton, D. R., & Cho, K. H. (2013). Modeling transport of Escherichia coli in a creek during and after artificial high-flow events: three-year study and analysis. Water Research, 47(8), 2676–2688.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Ministry of Business Innovation and Employment for funding for this study, and to the University of Canterbury for the PhD scholarship funding that supported this research. The authors wish to thank Delphine Rapp and Colleen Ross from AgResearch Ltd. for collection of faecal samples from herd homes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan L. Devane.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devane, M.L., Wood, D., Chappell, A. et al. Identifying avian sources of faecal contamination using sterol analysis. Environ Monit Assess 187, 625 (2015). https://doi.org/10.1007/s10661-015-4800-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4800-3

Keywords

Navigation