Skip to main content

Advertisement

Log in

Temporal change and its spatial variety on land surface temperature and land use changes in the Red River Delta, Vietnam, using MODIS time-series imagery

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Temporal changes in the land surface temperature (LST) in urbanization areas are important for studying an urban heat island (UHI) and regional climate change. This study examined the LST trends under different land use categories in the Red River Delta, Vietnam, using the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11A2) and land cover type product (MCD12Q1) for 11 years (2002–2012). Smoothened time-series MODIS LST data were reconstructed by the Harmonic Analysis of Time Series (HANTS) algorithm. The reconstructed LST (maximum and minimum temperatures) was assessed using the hourly air temperature dataset in two land-based meteorological stations provided by the National Climatic Data Center (NCDC). Significant correlation was obtained between MODIS LST and the air temperature for the daytime (R 2 = 0.73, root mean square error [RMSE] = 1.66 °C) and night time (R 2 = 0.84, RMSE = 1.79 °C). Statistical analysis also showed that LST trends vary strongly depending on the land cover type. Forest, wetland, and cropland had a slight tendency to decline, whereas cropland and urban had sharper increases. In urbanized areas, these increasing trends are even more obvious. This is undeniable evidence of the negative impact of urbanization on a surface urban heat island (SUHI) and global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Crosson, W. L., Al-Hamdan, M. Z., Hemmings, S. N. J., & Wade, G. M. (2012). A daily merged MODIS Aqua-Terra land surface temperature data set for the conterminous United States. Remote Sensing of Environment, 119, 315–324.

    Article  Google Scholar 

  • Dwyer, J., & Schmidt, G. (2006). The MODIS Reprojection Tool. Earth Sci. Satell. Remote sensing-data, Comput. Process. tools (pp. 162–177). Berlin: Springer.

    Book  Google Scholar 

  • General Statistical Office of Viet Nam (2012) Population and employment, 33–132.

  • GRASS Development Team (2012). Geographic Resources Analysis Support System (GRASS 6) programmer’s manual. Open source geospatial foundation project. http://grass.osgeo.org/programming6/. Accessed 14 May 2015.

  • Houghton, J.T., Ding, Y., Griggs, D.J., et al. (2001) IPCC, 2001: Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. (p. 881).

  • Jiménez-Muñoz, & Sobrino, J. A. (2003). A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research, 108, 4688. doi:10.1029/2003JD003480.

    Article  Google Scholar 

  • Ke, L., Wang, Z.-X., Song, C.-Q., & Lu, Z.-Q. (2011). Reconstruction of MODIS land surface temperature in northeast qinghai-xizang plateau and its comparison with air temperature. Plateau Meteorology, 30, 277–287.

    Google Scholar 

  • Lei, Z., Yaoming, M., Su, Z., & Salama, M. S. (2010). Estimation of land surface temperature over the tibetan plateau using AVHRR and MODIS data. Advances in Atmospheric Sciences, 27, 1110–1118. doi:10.1007/s00376-009-9133-0.1.Introduction.

    Article  Google Scholar 

  • Miliaresis, G. C. (2009). Regional thermal and terrain modelling of the Afar Depression from MODIS multi-temporal monthly night LST data. International Journal of Remote Sensing, 30, 2429–2436. doi:10.1080/01431160802562271.

    Article  Google Scholar 

  • Miliaresis, G. C. (2013). Thermal anomaly mapping from night MODIS imagery of USA, a tool for environmental assessment. Environmental Monitoring and Assessment, 185, 1601–1612. doi:10.1007/s10661-012-2654-5.

    Article  Google Scholar 

  • Miliaresis, G. C. (2014). Daily temperature oscillation enhancement of multitemporal LST imagery. Photogrammetric Engineering Remote Sensing, 80, 423–428. doi:10.14358/PERS.80.5.000.

    Article  Google Scholar 

  • Miliaresis, G. C., & Tsatsaris, A. (2010). Thermal terrain modeling of spatial objects, a tool for environmental and climatic change assessment. Environmental Monitoring and Assessment, 164, 561–572. doi:10.1007/s10661-009-0913-x.

    Article  CAS  Google Scholar 

  • NASA/Goddard Space Flight Center (2002) NASA Satellite Confirms Urban Heat Islands Increase Rainfall Around Cities. ScienceDaily. ScienceDaily.

  • Neteler, M. (2010). Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sensing, 2, 333–351. doi:10.3390/rs1020333.

    Article  Google Scholar 

  • Neteler, M., & Mitasova, H. (2008). Open source GIS: A GRASS GIS approach, 3rd ed. New York: Springer.

  • Pinheiro, A. C. T., Mahoney, R., Privette, J. L., & Tucker, C. J. (2006). Development of a daily long term record of NOAA-14 AVHRR land surface temperature over Africa. Remote Sensing of Environment, 103, 153–164. doi:10.1016/j.rse.2006.03.009.

    Article  Google Scholar 

  • Price, J. C. (1984). Land surface temperature measurements from the split window channels of the NOAA7 advanced very high resolution radiometer. Journal of Geophysical Research, 89, 7231–7237.

    Article  Google Scholar 

  • Quattrochi, D. A., & Luvall, J. C. (1999). Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications. Landscape Ecology, 14, 577–598.

    Article  Google Scholar 

  • Roerink, G. J., Menenti, M., & Verhoef, W. (2000). Reconstructing cloudfree NDVI composites using Fourier analysis of time series. International Journal of Remote Sensing, 21, 1911–1917. doi:10.1080/014311600209814.

    Article  Google Scholar 

  • Sobrino, J. A., Coll, C., & Caselles, V. (1991). Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5. Remote Sensing of Environment, 38, 19–34.

    Article  Google Scholar 

  • Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90, 434–440. doi:10.1016/j.rse.2004.02.003.

    Article  Google Scholar 

  • Sòria, G., & Sobrino, J. A. (2007). ENVISAT/AATSR derived land surface temperature over a heterogeneous region. Remote Sensing of Environment, 111, 409–422. doi:10.1016/j.rse.2007.03.017.

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. R. (1998). Effects of urban surface geometry on remotely-sensed surface temperature. International Journal of Remote Sensing, 19, 895–920.

    Article  Google Scholar 

  • Voogt, J., & Oke, T. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384. doi:10.1016/S0034-4257(03)00079-8.

    Article  Google Scholar 

  • Wan, Z., & Dozier, J. (1996). A generalized split- window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34, 892–905.

    Article  Google Scholar 

  • Wan, Z., & Li, Z.-L. (1997). A physics-based algorithm for retrieving land-surface emissivity and temperatur e from EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 35, 980–996.

    Article  Google Scholar 

  • Xu, Y., & Shen, Y. (2013). Reconstruction of the land surface temperature time series using harmonic analysis. Computers & Geosciences, 61, 126–132. doi:10.1016/j.cageo.2013.08.009.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Japanese Grant Aid for Human Resource Development Scholarship (JDS), Japan International Cooperation Agency (JICA), for financial support to the first author (Nguyen Van On) for the field survey in Hanoi, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Kawamura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Nguyen, O., Kawamura, K., Trong, D.P. et al. Temporal change and its spatial variety on land surface temperature and land use changes in the Red River Delta, Vietnam, using MODIS time-series imagery. Environ Monit Assess 187, 464 (2015). https://doi.org/10.1007/s10661-015-4691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4691-3

Keywords

Navigation