Skip to main content
Log in

Multi-year evaluation of ambient volatile organic compounds: temporal variation, ozone formation, meteorological parameters, and sources

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The multi-year characteristics of ambient volatile organic compounds (VOCs) and their source contribution in a selected metropolitan (Seoul) and rural (Seokmolee) areas in Korea were investigated to provide the framework for development and implementation of ambient VOC control strategies. For Seoul, none of the three VOC groups exhibited any significant trend in their ambient concentrations, whereas for Seokmolee, they all showed a generally decreasing trend between 2005 and 2008 and an increasing trend after 2008. Two paraffinic (ethane and propane) and two olefin (ethylene and propylene) hydrocarbons displayed higher concentrations during the cold season than warm season, while the other target VOCs did not exhibit any significant trends. Ethylene and toluene were the first and second largest contributors to ozone formation, respectively, whereas several other VOCs displayed photochemical ozone formation potential values less than 0.01 ppb. For both areas, there was a significant negative correlation between ambient temperature and the selected VOC group concentrations. In contrast, a significant positive correlation was observed between relative humidity and the three VOC group concentrations, while no significant correlation was observed between wind speed and VOC group concentrations. For Seoul, the combination of vehicle exhaust and gasoline/solvent evaporation was the greatest source of VOCs, followed by liquid natural gas (LNG) and liquid petroleum gas (LPG). However, combination of LNG and LPG was the greatest source of VOCs at Seokmolee, followed by the combination of vehicle exhaust and gasoline evaporation, and then biogenic sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atkinson, R., & Arey, J. (2003). Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment, 37(suppl. 2), 197–219.

    Article  Google Scholar 

  • Badol, C., Locoge, N., Léonardis, T., & Galloo, J.-C. (2008). Using a source-receptor approach to characterize VOC behavior in a French urban area influenced industrial emissions part I: study area description, data set acquisition and qualitative data analysis of the data set. Science of the Total Environment, 389, 441–452.

    Article  CAS  Google Scholar 

  • Blanchard, C. L., Hidy, G. M., Tanenbaum, S., Rasmussen, R., Watkins, R., & Edgerton, E. (2010). NMOC, ozone, and organic aerosol in the southeastern United States, 1999 − 2007: 1. Spatial and temporal variations of NMOC concentrations and composition in Atlanta, Georgia. Atmospheric Environment, 44, 4827–4839.

    Article  CAS  Google Scholar 

  • Borrás, E., Tortajada-Genaro, L. A., Vázquez, M., & Zielinska, B. (2009). Polycyclic aromatic hydrocarbon exhaust emissions from different reformulated diesel fuels and engine operating conditions. Atmospheric Environment, 43, 5944–5952.

    Article  Google Scholar 

  • Butler, T. M., Lawrence, M. G., Taraborrelli, D., & Lelieveld, J. (2011). Multi-day ozone production potential of volatile organic compounds calculated with a tagging approach. Atmospheric Environment, 45, 4082–4090.

    Article  CAS  Google Scholar 

  • Buzcu, B., & Fraser, M. P. (2006). Source identification and apportionment of volatile organic compounds in Houston. Tx. Atmospheric Environment, 40, 2385–2400.

    Article  CAS  Google Scholar 

  • Cai, C., Geng, F., Tie, X., Yu, Q., & An, J. (2010). Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmospheric Environment, 44, 5005–5014.

    Article  CAS  Google Scholar 

  • Carter, W. P. L. (1994). Development of ozone reactivity scales for volatile organic compounds. Journal of the Air and Waste Management Association, 44, 881–899.

    Article  CAS  Google Scholar 

  • Carter, W. P. L. (2010). Development of the SAPRC-07 chemical mechanism. Atmospheric Environment, 44, 5324–5335.

    Article  CAS  Google Scholar 

  • Carter, W. P. L., & Seinfeld, J. H. (2012). Winter ozone formation and VOC incremental reactivities in the Upper Green River Basin of Wyoming. Atmospheric Environment, 50, 255–266.

    Article  CAS  Google Scholar 

  • Chang, C.-C., Chen, T.-Y., Lin, C.-Y., Yuan, C.-S., & Liu, S.-C. (2005). Effects of reactive hydrocarbons on ozone formation in southern Taiwan. Atmospheric Environment, 39, 2867–2878.

    Article  CAS  Google Scholar 

  • Chiang, H.-L., Tsai, J.-H., Chen, S.-Y., Lin, K.-H., & Ma, S.-Y. (2007). VOC concentration profiles in an ozone non-attainment area: a case study in an urban and industrial complex metroplex in southern Taiwan. Atmospheric Environment, 41, 1848–1860.

    Article  CAS  Google Scholar 

  • Derwent, R. G., Jenkin, M. E., Passant, N. R., & Pilling, M. J. (2007). Photochemical ozone creation potentials (POCPs) for different emission sources of organic compounds under European conditions estimated with a Master Chemical Mechanism. Atmospheric Environment, 41, 2570–2579.

    Article  CAS  Google Scholar 

  • Duan, J., Tan, J., Yang, L., Wu, S., & Hao, J. (2008). Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research, 88, 25–35.

    Article  CAS  Google Scholar 

  • Ergut, A., Levendis, Y. A., Richter, H., Howard, J. B., & Carlson, J. (2007). The effect of equivalence ratio on the soot onset chemistry in one-dimensional, atmospheric-pressure, premixed ethylbenzene flames. Combustion Flame, 151, 173–195.

    Article  CAS  Google Scholar 

  • Friend, A. J., Ayoko, G. A., & Guo, H. (2011). Multi-criteria ranking and receptor modelling of airborne fine particles at three sites in the Pearl River Delta region of China. Science of the Total Environment, 409, 719–737.

    Article  CAS  Google Scholar 

  • Guo, H. (2011). Source apportionment of volatile organic compounds in Hong Kong homes. Building and Environment, 46, 2280–2286.

    Article  Google Scholar 

  • Hoque, R. R., Khillare, P. S., Agarwal, T., Shridhar, V., & Balachandran, S. (2008). Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Science of the Total Environment, 392, 30–40.

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer). (2004). Monographs on the evaluation of the carcinogenic risks of chemicals to man. Geneva: WHO.

    Google Scholar 

  • Lee, H. S., Kang, C. M., Kang, B. W., & Kim, H. K. (1999). Seasonal variations of acidic air pollutants in Seoul, South Korea. Atmospheric Environment, 33, 3143–3152.

    Article  CAS  Google Scholar 

  • Leuchner, M., & Rappenglück, B. (2010). VOC source–receptor relationships in Houston during TexAQS-II. Atmospheric Environment, 44, 4056–4067.

    Article  CAS  Google Scholar 

  • Liu, P.-W. G., Yao, Y.-C., Tsai, J.-H., Hsu, Y.-C., Chang, L.-P., & Chang, K.-H. (2008). Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Science of the Total Environment, 398, 154–163.

    Article  CAS  Google Scholar 

  • Mahbub, P., Goonetilleke, A., Ayoko, G. A., & Egodawatta, P. (2011). Effects of climate change on the wash-off of volatile organic compounds from urban roads. Science of the Total Environment, 409, 3934–3942.

    Article  CAS  Google Scholar 

  • McCarthy, M. C., Hafner, H. R., Chinkin, L. R., & Charrier, J. G. (2007). Temporal variability of selected air toxics in the United States. Atmospheric Environment, 41, 7180–7194.

    Article  CAS  Google Scholar 

  • McDonald, B. C., & Genter, D. R. (2013). Long-term trends in motor vehicle emissions in U.S. urban areas. Environmental Science & Technology, 47, 10022–10031.

    Article  CAS  Google Scholar 

  • Na, K., & Kim, Y. P. (2007). Chemical mass balance receptor model applied to ambient C2−C9 VOC concentration in Seoul, Korea: effect of chemical reaction losses. Atmospheric Environment, 41, 6715–6728.

    Article  CAS  Google Scholar 

  • Na, K., Moon, K.-C., & Kim, Y. P. (2005). Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul. Atmospheric Environment, 39, 5517–5524.

    Article  CAS  Google Scholar 

  • Nguyen, H. T., Kim, K.-H., & Kim, M.-Y. (2009). Volatile organic compounds at an urban monitoring stations in Korea. Journal of Hazardous Materials, 161, 163–174.

    Article  CAS  Google Scholar 

  • NIER (National Institute of Environmental Research) (2005). Monitoring of HAPs in Ambient Air (II), NIER No. 2005-04-749.

  • Parra, M. A., González, L., Elustondo, D., Garrigó, J., Bermejo, R., & Santamaría, J. M. (2006). Spatial and temporal trends of volatile organic compounds (VOC) in a rural area of northern Spain. Science of the Total Environment, 370, 157–167.

    Article  CAS  Google Scholar 

  • Parrish, D. D., Kuster, W. C., Shao, M., Yokouchi, Y., Kondo, Y., Goldan, P. D., de Gouw, J. A., Koike, M., & Shirai, T. (2009). Comparison of air pollutant emissions among mega-cities. Atmospheric Environment, 43, 6435–6441.

    Article  CAS  Google Scholar 

  • Pérez-Rial, D., López-Mahía, P., & Tauler, R. (2010). Investigation of the source composition and temporal distribution of volatile organic compounds (VOCs) in a suburban area of the northwest of Spain using chemometric methods. Atmospheric Environment, 44, 5122–5132.

    Article  Google Scholar 

  • Rumchev, K., Brown, H., & Spickett, J. (2007). Volatile organic compounds: do they present a risk to our health? Reviews on Environmental Health, 22, 39–55.

    Article  CAS  Google Scholar 

  • Schifter, I., Díaz, L., Rodríguez, R., & González-Macías, C. (2014). The contribution of evaporative emissions from gasoline vehicles to the volatile organic compound inventory in Mexico city. Environmental Monitoring and Assessment, 186, 3969–3983.

    Article  CAS  Google Scholar 

  • Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33, 1821–1845.

    Article  CAS  Google Scholar 

  • Strong, J., Whyatt, J. D., Metcalfe, S. E., Derwent, R. G., & Hewitt, C. N. (2013). Investigating the impacts of anthropogenic and biogenic VOC emissions and elevated temperatures during the 2003 ozone episode in the UK. Atmospheric Environment, 74, 393–401.

    Article  CAS  Google Scholar 

  • Susaya, J., Kim, K.-H., Shon, Z.-H., & Brown, R. J. C. (2013). Demonstration of long-term increases in tropospheric O3 levels: causes and potential impacts. Chemosphere, 92, 1520–1528.

    Article  CAS  Google Scholar 

  • von Schneidemesser, E., Monks, P. S., & Plass-Duelmer, C. (2010). Global comparison of VOC and CO observations in urban areas. Atmospheric Environment, 44, 5053–5064.

    Article  Google Scholar 

  • Zheng, J., Yu, Y., Mo, Z., Zhang, Z., Wang, X., Yin, S., Peng, K., Yang, Y., Feng, X., & Cai, H. (2013). Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Science of the Total Environment, 456–457, 127–136.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the government of Korea (MEST) (No. 2011-0027916) and GCRC-SOP (No. 2011-0030013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan K. Jo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.H., Chun, HH. & Jo, W.K. Multi-year evaluation of ambient volatile organic compounds: temporal variation, ozone formation, meteorological parameters, and sources. Environ Monit Assess 187, 27 (2015). https://doi.org/10.1007/s10661-015-4312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4312-1

Keywords

Navigation