Skip to main content

Advertisement

Log in

Spatial distribution and pollution assessment of trace metals in surface sediments of Ziqlab Reservoir, Jordan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Surface sediment samples were collected from Ziqlab dam in northwestern Jordan to investigate the spatial distribution of selected trace metals and assess their pollution levels. The results showed that the concentrations of Pb, Cd, and Zn exceeded the environmental background values. Cd, Ni, and Cr contents were higher than the threshold effect level (TEL) in 63, 83, and 60 % of the reservoir sediments, respectively; whereas Pb, Zn, and Cu were less than the TEL limit. The concentrations of trace metals in reservoir sediment varied spatially, but their variations showed similar trends. Elevated levels of metals observed in the western part (adjacent to the dam wall) were coincided with higher contents of clay-silt fraction and total organic matters. Multivariate analysis indicated that Pb, Co, and Mn may be related to the lithologic component and/or the application of agrochemicals in the upstream agricultural farms. However, Cd and Zn concentrations were probably elevated due to inputs from agricultural sources, including fertilizers. Evaluation of contamination levels by the Sediment Quality Guidelines of the US-EPA, revealed that sediments were non-polluted to moderately polluted with Pb, Cu, Zn, and Cr, but non-polluted to moderately to heavily polluted with Ni and non-polluted with Mn. The geoaccumulation index showed that Ziqlab sediments were unpolluted with Pb, Cu, Zn, Ni, Cr, Co, and Mn, but unpolluted to moderately polluted with Cd. The high enrichment values for Cd and Pb (>2) indicate their anthropogenic sources, whereas the remaining elements were of natural origins consistent with their low enrichment levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abed, A. M. (1982). Geology of Jordan. Amman: Al-Nahada Al-Islamiah Library.

    Google Scholar 

  • Abed, A. M., & Ashour, T. R. (1987). Petrography and age determination of the NW Jordan phosphorites. Dirasat, 14, 247–263.

    Google Scholar 

  • Abed, A. M., Sadaqah, R., & Al Kuisi, M. (2008). Uranium and potentially toxic metals during the mining, beneficiation and processing of phosphorite and their effects on ground water in Jordan. Mine Water and the Environment, 27, 171–182.

    Article  CAS  Google Scholar 

  • Abu-Rukah, Y., & Ghrefat, H. A. (2004). Ion chemistry of waters impounded by the Ziqlab dam, Jordan, and weathering processes—a case study. International Journal of Environmental Pollution, 21, 263–276.

    Article  CAS  Google Scholar 

  • Al-Rawabdeh, A., Al-Ansari, N., Al-Taani, A. A., & Knutsson, S. (2013). A GIS-based drastic model for assessing aquifer vulnerability in Amman-Zerqa groundwater basin, Jordan. Engineering, 5, 490–504.

    Article  Google Scholar 

  • Al-Taani, A. A. (2013). Seasonal variations in water quality of Al-Wehda Dam North of Jordan and water suitability for irrigation in summer. Arabian Journal of Geosciences, 6, 1131–1140.

    Article  CAS  Google Scholar 

  • Al-Taani, A. A. (2014). Trend analysis in water quality of Al-Wehda Dam, NW Jordan. Environmental Assessment and Monitoring, 186, 6223–6239.

    Article  CAS  Google Scholar 

  • Al-Taani, A. A., Batayneh, A., El-Radaideh, N., Al-Momani, I., & Rawabdeh, A. (2012). Monitoring of selenium concentrations in major springs of Yarmouk Basin, North Jordan. World Applied Sciences Journal, 18, 704–714.

    CAS  Google Scholar 

  • Al-Taani, A. A., Batayneh, A., Mogren, S., Nazzal, N., Ghrefat, H., Zaman, H., et al. (2013). Groundwater quality of coastal aquifer systems in the eastern coast of the Gulf of Aqaba, Saudi Arabia. Journal of Applied Science and Agriculture, 8, 768–778.

    Google Scholar 

  • Al-Taani, A. A., Batayneh, A., Nazzal, Y., Ghrefat, H., Elawadi, E., & Zaman, H. (2014). Status of trace metals in surface seawater of the Gulf of Aqaba, Saudi Arabia. Marine Pollution Bulletin, 86, 582–590.

    Article  CAS  Google Scholar 

  • Bai, J., Cui, B., Chen, B., Zhang, K., Deng, W., Gao, H., et al. (2011a). Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecological Modelling, 222, 301–306.

    Article  CAS  Google Scholar 

  • Bai, J., Huang, L., Yan, D., Wang, Q., Gao, H., Xiao, R., et al. (2011b). Contamination characteristics of heavy metals in wetland soils along a tidal ditch of the Yellow River Estuary, China. Stochastic Environmental Research and Risk Assessment, 25, 671–676.

    Article  Google Scholar 

  • Bai, J., Xiao, R., Cui, B., Zhang, K., Wang, Q., Liu, X., et al. (2011c). Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environmental Pollution, 159, 817–824.

    Article  CAS  Google Scholar 

  • Basnyat, P., Teeter, L., Lockaby, B. G., & Flynn, K. M. (2000). Land use characteristics and water quality: a methodology for valuing of forested buffers. Environmental Management, 26, 153–161.

    Article  Google Scholar 

  • Batayneh, A. T. (2010). Heavy metals in water springs of the Yarmouk Basin, North Jordan and their potentiality in health risk. International Journal of Physical Sciences, 5, 997–1003.

    CAS  Google Scholar 

  • Batayneh, A. T. (2012). Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: health risk assessment. International Journal of Environmental Sciences and Technology, 9, 153–162.

    Article  CAS  Google Scholar 

  • Batayneh, A., Ghrefat, H., Mogren, S., Laboun, A., Qaisy, S., Zumlot, T., et al. (2012). Assessment of the physicochemical parameters and heavy metals toxicity: application to groundwater quality in unconsolidated shallow aquifer system. Research Journal of Environmental Toxicology, 6, 169–183.

    Article  Google Scholar 

  • Batayneh, A., Ghrefat, H., Zumlot, T., Elawadi, E., Mogren, S., Zaman, Z., et al. (2014). Assessing of metals and metalloids in surface sediments along the Gulf of Aqaba Coast, Northwestern Saudi Arabia. Journal of Coastal Research. doi:10.2112/JCOASTRES-D-13-00143.1. in Press.

    Google Scholar 

  • Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., et al. (2005). Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecological Indicators, 5, 151–169.

    Article  CAS  Google Scholar 

  • Christophoridis, C., Dedepsidis, D., & Fytianos, K. (2009). Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf N. Greece. Assessment using pollution indicators. Journal of Hazardous Materials, 168, 1082–1091.

    Article  CAS  Google Scholar 

  • Dean, L. (2005). The Middle East and North Africa 2006. Europe regional surveys of the world (52nd ed.). London: Routledge.

    Google Scholar 

  • Demirak, A., Yilmaz, F., Tuna, A., & Ozdemir, N. (2006). Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere, 63, 1451–1458.

    Article  CAS  Google Scholar 

  • Diagomanlin, V., Farhang, M., Ghazi-Khansari, M., & Jafar-Zadeh, N. (2004). Heavy metals (Ni, Cr, Cu) in the Karoon waterway river, Iran. Toxicology Letters, 151, 63–68.

    Article  Google Scholar 

  • Drake, C. (1997). Water Resource Conflicts in the Middle East. Journal of Geography, 96, 4–12.

  • Eimers, M. C., Evans, R. D., & Welbourn, P. M. (2002). Partitioning and bioaccumulation of cadmium in artificial sediment systems: application of a stable isotope tracer technique. Chemosphere, 46, 543–551.

    Article  CAS  Google Scholar 

  • El-Radaideh, N., Al-Taani, A. A., Al-Momani, T., Tarawneh, K., Batayneh, A., & Taani, A. (2014). Evaluating the potential of sediments in Ziqlab Reservoir (northwest Jordan) for soil replacement and amendment. Lake and Reservoir Management, 30, 32–45.

    Article  CAS  Google Scholar 

  • Fan, A. M. (1996). An introduction to monitoring and environmental and human risk assessment of metal. In Toxicology of Metals; Magos, L., Suzuki, T., Eds.; CRC Lewis Publishers: Boca Raton. p. 5–9

  • Gao, H., Bai, J., Xiao, R., Liu, P., Jiang, W., & Wang, J. (2013). Levels, sources and risk assessment of trace elements in wetland soils of a typical shallow freshwater lake, China. Stochastic Environmental Research and Risk Assessment, 27, 275–284.

    Article  Google Scholar 

  • Giesy, J. P., & Hoke, R. A. (1990). Freshwater sediment quality criteria: toxicity bioassessment. In R. Baudo, J. P. Giesy, & M. Muntao (Eds.), In sediment chemistry and toxicity of in-place pollutants (p. 391). Ann Arbor: Lewis Publishers.

    Google Scholar 

  • Gonzalez, Z. I., Krachler, M., Cheburkin, A. K., & Shotyk, W. (2006). Spatial distribution of natural enrichments of arsenic, selenium, and uranium in a minerotrophic peatland, Gola diLago, Canton Ticino, Switzerland. Environmental Science & Technology, 40, 6568–6574.

    Article  Google Scholar 

  • Hakanson, L., & Jasson, M. (1983). Principles of lake sedimentology. Berlin: Springer.

    Book  Google Scholar 

  • He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19, 125–140.

    Article  CAS  Google Scholar 

  • Hesse, P. R. (1972). Textbook of soil chemical analysis (p. 520). New York (NY): Chemical Publications.

    Google Scholar 

  • Jarrar, M., & Mustafa, H. (1995). Mineralogical and geochemical study of the oil shale of Wadi Esh-Shallalah (NW Jordan). Abhath Al-Yarmouk, 4, 111–136.

    Google Scholar 

  • Kalbitz, K., & Wennrich, R. (1998). Mobilization of heavy metals and arsenic in polluted wetland. Soils and its dependence on dissolved organic matter. Science of the Total Environment, 209, 27–39.

    Article  CAS  Google Scholar 

  • Lafabrie, C., Pergent, G., Kantin, R., Pergent-Martini, C. & Gonzalez, J. L. (2007). Trace metals assessment in water, sediment, mussel and seagrass species-validation of the use of posidonia oceanica as a metal biomonitor. Chemosphere, 68, 2033–2039.

  • Laing, G. D., Meyer, B. D., Meers, E., Lesage, E., Moortel, A. V. D., Tack, F. M. G., et al. (2008). Metal accumulation in intertidal marshes: role of sulphide precipitation. Wetlands, 28, 735–746.

    Article  Google Scholar 

  • Leopold, E. N., Jung, M. C., Auguste, O., Ngatcha, N., Georges, E., & Lape, M. (2008). Metals pollution in freshly deposited sediments from river Mingoa, main tributary to the Municipal lake of Yaounde, Cameroon. Geoscience Journal, 12, 337–347.

    Article  CAS  Google Scholar 

  • Loring, D. H., & Rantala, R. T. (1992). Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth Science Reviews, 32, 235–263.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    Article  CAS  Google Scholar 

  • Muller, G. (1979). Heavy metals in the sediment of the Rhine-Changes seity, 1971. Umsch Wiss Tech, 79, 778–783.

    Google Scholar 

  • Muller, G. (1981). The heavy metal pollution of the sediments of Neckars and its tributary: a stocktaking. Chemiker-Zeitung, 105, 157–164.

    Google Scholar 

  • Murray, K. S., Cauvent, D., Lybeer, M., & Thomas, J. C. (1999). Particle size and chemical control of heavy metals in bed sediment from the Rouge River, southeast Michigan. Environmental Science and Technology, 33, 397–404.

    Article  Google Scholar 

  • MWI (Ministry of Water and Irrigation), 2008, National water master plan. Amman: Ministry of Water and Irrigation, Jordan. http://www.mwi.gov.jo/NWMP/.

  • Osher, L. J., Leclerc, L., Wiersma, G. B., Hess, C. T. & Guiseppe, V. E. (2006). Heavy metal contamination from historic mining in upland soil and estuarine sediments of Egypt Bay, Maine, USA. Estuarine, Coastal and Shelf Science, 70, 169–179.

  • Pekey, H. (2006). Heavy Metals Pollution Assessment in Sediments of the Izmit Bay, Turkey. Environmental Monitoring and Assessment, 123, 219–31.

  • Saadoun, I., Bataineh, E. & Al-Handal, A. (2008). The primary production conditions of Zeqlab Dam (Reservoir). Jordan Journal of Biological Sciences, 1, 67–72.

  • Sakan, S. M., DorDevic, D. S., Lazic, M. M., & Tadic, M. M. (2012). Assessment of arsenic and mercury contamination in the Tisa River sediments and industrial canal sediments (Danube alluvial formation), Serbia. Journal of Environmental Science and Health, Part A, 47, 109–116.

    Article  CAS  Google Scholar 

  • Shatnawi, A. (2002). Hydrological and hydrochemical study for Zeglab Dam. Master Thesis, Al al-Bayt University, Jordan.

  • Shea, D. (1988). Developing national sediment quality criteria. Environmental Science and Technology, 22, 1256–1261.

    Article  CAS  Google Scholar 

  • Simex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Checapeake Bay. Environmental Geology, 3, 315–323.

    Article  Google Scholar 

  • Smith, S. L., MacDonald, D. D., Keenleyside, K. A., Ingersoll, C. G., & Field, L. J. (1996). A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. Journal of Great Lakes Research, 22, 624–638.

    Article  CAS  Google Scholar 

  • Spisto, G. (1989). The chemistry of soils (p. 277). New York (NY): Oxford University Press.

    Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust; a new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. The Geological Society of America, 72, 175–192.

    Article  CAS  Google Scholar 

  • USA Environmental Protection Agency (USEPA). (1997). The incidence and severity of sediments contamination in surface waters of the U.S., v.1-national sediment quality survey. USEPA Report 823-R-97-006.

  • Wakida, F. T., Lara-Ruiz, D., Temores-Pena, J., Rodriguez-Ventura, J. G., Diaz, C., & Garcia-Flores, E. (2008). Heavy metals in sediments of the Tecate River, Mexico. Environmental Geology, 54, 637–642.

    Article  CAS  Google Scholar 

  • Wittmann, G. T. W. (1981). Toxic metals. In: Metal Pollution in the Aquatic Environment, U. Förstner and G. T. W. Wittmann (Eds.). 2nd Edition. Spring-Verlag, Berlin. p. 3–70

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., et al. (2001). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159, 84–91.

    Article  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China-Weathering features anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54, 1051–1070.

    Article  CAS  Google Scholar 

  • Zheng, N., Wang, Q., Liang, Z., & Zheng, D. (2008). Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environmental Pollution, 154, 135–142.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express sincere gratitude to the Ministry of Water and Irrigation, Ministry of Agriculture, Al-Albyat University, and Yarmouk University in Jordan for the help and support they provided

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Al-Taani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Taani, A.A., Batayneh, A.T., El-Radaideh, N. et al. Spatial distribution and pollution assessment of trace metals in surface sediments of Ziqlab Reservoir, Jordan. Environ Monit Assess 187, 32 (2015). https://doi.org/10.1007/s10661-015-4289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4289-9

Keywords

Navigation