Skip to main content
Log in

Agricultural practices in grasslands detected by spatial remote sensing

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The major decrease in grassland surfaces associated with changes in their management that has been observed in many regions of the earth during the last half century has major impacts on environmental and socio-economic systems. This study focuses on the identification of grassland management practices in an intensive agricultural watershed located in Brittany, France, by analyzing the intra-annual dynamics of the surface condition of vegetation using remotely sensed and field data. We studied the relationship between one vegetation index (NDVI) and two biophysical variables (LAI and fCOVER) derived from a series of three SPOT images on one hand and measurements collected during field campaigns achieved on 120 grasslands on the other. The results show that the LAI appears as the best predictor for monitoring grassland mowing and grazing. Indeed, because of its ability to characterize vegetation status, LAI estimated from remote sensing data is a relevant variable to identify these practices. LAI values derived from the SPOT images were then classified based on the K-Nearest Neighbor (KNN) supervised algorithm. The results points out that the distribution of grassland management practices such as grazing and mowing can be mapped very accurately (Kappa index = 0.82) at a field scale over large agricultural areas using a series of satellite images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arrouays, D., Deslais, W., & Badeau, V. (2001). The carbon content of topsoil and its geographical distribution in France. Soil Use and Management, 17(1), 7–11.

    Article  Google Scholar 

  • Asam, S., Fabritius, H., Klein, D., Conrad, C., & Dech, S. (2013). Derivation of leaf area index for grassland within alpine upland using multi-temporal rapid eye data. International Journal of Remote Sensing, 34(23), 8628–8652. doi:10.1080/01431161.2013.845316.

    Article  Google Scholar 

  • ASD. (2000). FieldSpec 3 portable spectroradiometer user’s guide. Colorado: Analytical Spectral Devices.

    Google Scholar 

  • Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35, 161–173.

    Article  Google Scholar 

  • Baret, F., Guyot, G., & Major, D. (1989). TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proceedings of the 12th Canadian Symposium on Remote Sensing and IGARSS’89, Cairo, Egypt, vol 3, pp. 1355–1358.

  • Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., Berthelot, B., Niño, F., Weiss, M., Samain, O., Roujean, J. L., & Leroy, M. (2007). LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: part 1: principles of the algorithm. Remote Sensing of Environment, 110(3), 275–286. doi:10.1016/j.rse.2007.02.018. URL http://www.sciencedirect.com.gate3.inist.fr/science/article/B6V6V-4NKJ1K0-1/2/29e421e7954752424d9bfbf9b697ca68.

    Article  Google Scholar 

  • Batáry, P., Báldi, A., & Erdõs, S. (2007). Grassland versus non-grassland bird abundance and diversity in managed grasslands: local, landscape and regional scale effects. Biodiversity and Conservation, 16, 871–881.

    Article  Google Scholar 

  • Bsaibes, A., Courault, D., Baret, F., Weiss, M., Olioso, A., Jacob, F., Hagolle, O., Marloie, O., Bertrand, N., Desfond, V., & Kzemipour, F. (2009). Albedo and LAI estimates from FORMOSAT-2 data for crop monitoring. Remote Sensing of Environment, 113(4), 716–729. doi:10.1016/j.rse.2008.11.014. URL http://www.sciencedirect.com/science/article/pii/S0034425708003489.

    Article  Google Scholar 

  • Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment 62(3):241–252, DOI 10.1016/S0034-4257(97)00104-1. http://www.sciencedirect.com/science/article/pii/S00344257970 01041

  • Chen, J. M., & Black, T. A. (1991). Measuring leaf area index of plant canopies with branch architecture. Agricultural and Forest Meteorology, 57(1–3), 1–12.

    Article  Google Scholar 

  • Claverie, M., Vermote, E. F., Weiss, M., Baret, F., Hagolle, O., & Demarez, V. (2013). Validation of coarse spatial resolution LAI and FAPAR time series over cropland in southwest France. Remote Sensing of Environment, 139, 216–230. doi:10.1016/j.rse.2013.07.027. URL http://www.sciencedirect.com/science/article/pii/S0034425713002393.

    Article  Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.

    Article  Google Scholar 

  • Corgne, S., Hubert-Moy, L., Barbier, J., & Solaiman, B. (2002). Follow-up and modeling of the land use in an intensive agricultural watershed in France. In: SPIE, 4879, Remote Sensing for Agriculture, Ecosystems, and Hydrology IV, pp. 342–351.

  • Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.

    Article  Google Scholar 

  • Darvishzadeh, R., Atzberger, C., Skidmore, A., & Schlerf, M. (2011). Mapping grassland leaf area index with airborne hyperspectral imagery: a comparison study of statistical approaches and inversion of radiative transfer models. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), 894–906.

    Article  Google Scholar 

  • Dìaz, B. M., & Blackburn, G. A. (2003). Remote sensing of mangrove biophysical properties: evidence from a laboratory simulation of the possible effects of background variation on spectral vegetation indices. International Journal of Remote Sensing, 24(1), 53–73. doi:10.1080/01431160305012.

    Article  Google Scholar 

  • Dusseux, P., Hubert-Moy, L., Lecerf, R., Corpetti, T., & Gong, X. (2011). Identification of grazed and mown grasslands using a time-series of high-spatial-resolution remote sensing images. In: 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Multitemp, Trento, Italy, pp. 145–148.

  • Dusseux, P., Gong, X., Hubert-Moy, L., & Corpetti, T. (2014). Identification of grassland management practices from Lai time series. Journal of Applied Remote Sensing, In press.

  • Duveiller, G., Weiss, M., Baret, F., & Defourny, P. (2011). Retrieving wheat green area index during the growing season from optical time series measurements based on neural network radiative transfer inversion. Remote Sensing of Environment, 115(3), 887–896. doi:10.1016/j.rse.2010.11.016. URL http://www.sciencedirect.com/science/article/pii/S0034425710003354.

    Article  Google Scholar 

  • Edirisinghe, A., Hill, M. J., Donald, G. E., & Hyder, M. (2011). Quantitative mapping of pasture biomass using satellite imagery. International Journal of Remote Sensing, 32(10), 2699–2724. doi:10.1080/01431161003743181. URL http://www.tandfonline.com/doi/abs/10.1080/01431161003743181.

    Article  Google Scholar 

  • Feret, J., François, C., Asner, G. P., Gitelson, A. A., Martin, R. E., Bidel, L. P., Ustin, S. L., le Maire, G., & Jacquemoud, S. (2008). PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment, 112(6), 3030–3043.

    Article  Google Scholar 

  • Fontana, F., Rixen, C., Jonas, T., Aberegg, G., & Wunderle, S. (2008). Alpine grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI time series—a comparison with in situ measurements. Sensors, 8(4), 2833–2853.

    Article  Google Scholar 

  • Franke, J., Heinzel, V., & Menz, G. (2006). Assessment of NDVI—differences caused by sensor specific relative spectral response functions. In: Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, IGARSS’06, pp 1138–1141. doi:10.1109/IGARSS.2006.294.

  • Friedl, Michaelsen, J., Davis, F. W., Walker, H., & Schimel, D. S. (1994). Estimating grassland biomass and leaf area index using ground and satellite data. International Journal of Remote Sensing, 15, 1401–1420.

    Article  Google Scholar 

  • Gamon, J. A., Field, C. B., Goulden, M. L., Griffin, K. L., Hartley, A. E., Joel, G., Penuelas, J., & Valentini, R. (1995). Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecological Applications, 5(1), 28–41.

    Article  Google Scholar 

  • Gao, F., Anderson, M. C., Kustas, W. P., & Wang, Y. (2012). Simple method for retrieving leaf area index from Landsat using MODIS leaf area index products as reference. Journal of Applied Remote Sensing, 6(1), 063,554-1. doi:10.1117/1.JRS.6.063554.

    Article  Google Scholar 

  • Garrigues, S., Shabanov, N. V., Swanson, K., Morisette, J. T., Baret, F., & Myneni, R. B. (2008). Intercomparison and sensitivity analysis of leaf area index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agricultural and Forest Meteorology, 148(89), 1193–1209. doi:10.1016/j.agrformet.2008.02.014. URL http://www.sciencedirect.com/science/article/pii/S0168192308000683.

    Article  Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76–87.

    Article  Google Scholar 

  • Glenn, E. P., Huete, A. R., Nagler, P. L., & Nelson, S. G. (2008). Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors, 8(4), 2136–2160. doi:10.3390/s8042136.

    Article  Google Scholar 

  • Griffith, J. A., Price, K. P., & Martinko, E. A. (2001). A multivariate analysis of biophysical parameters of tallgrass prairie among land management practices and years. Environmental Monitoring and Assessment, 68(3), 249–271.

    Article  CAS  Google Scholar 

  • Guo, X., Price, K. P., & Stiles, J. M. (2000). Biophysical and spectral characteristics of cool- and warm-season grasslands under three land management practices in eastern Kansas. Natural Resources Research, 9(4), 321–331.

    Article  Google Scholar 

  • Henebry, G. M. (1993). Detecting change in grasslands using measures of spatial dependence with landsat TM data. Remote Sensing of Environment, 46(2), 223–234.

    Article  Google Scholar 

  • Huete, A. R., Jackson, R. D., & Post, D. F. (1985). Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment, 17(1), 37–53. doi:10.1016/0034-4257(85)90111-7. URL http://www.sciencedirect.com/science/article/pii/0034425785901117.

    Article  Google Scholar 

  • Huete, A. R., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451. doi:10.1016/S0034-4257(96)00112-5. URL http://www.sciencedirect.com/science/article/pii/S0034425796001125.

    Article  Google Scholar 

  • Huyghe, C., De Vliegher, A., Van Gils, B., & Peeters, A. (2014). Grasslands and herbivore production in Europe and effects of common policies.

  • Jacquemoud, S., & Baret, F. (1990a). PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment, 34(2), 75–91.

    Article  Google Scholar 

  • Jacquemoud, S., & Baret, F. (1990b). PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment, 34(2), 75–91. doi:10.1016/0034-4257(90)90100-Z. URL http://www.sciencedirect.com/science/article/pii/003442579090100Z.

    Article  Google Scholar 

  • Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P., Asner, G., Franois, C., & Ustin, S. (2009). PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sensing of Environment, 113(Supplement 1), S56–S66.

    Article  Google Scholar 

  • Jensen, J. R. (2000). Remote sensing of the environment: an earth resource perspective. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Jiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G., & Zhang, X. (2006). Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 101(3), 366–378. doi:10.1016/j.rse.2006.01.003. URL http://www.sciencedirect.com/science/article/pii/S0034425706000290.

    Article  Google Scholar 

  • Lecerf, R., Corpetti, T., Hubert-Moy, L., Dubreuil, V. (2005). Monitoring land use and land cover changes in oceanic and fragmented landscapes with reconstructed MODIS time series. In: Third International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Multitemp, Biloxi, Mississippi USA, pp. 195–199.

  • Lecerf, R., Hubert-Moy, L., Baret, F., Abdel-Latif, B., Corpetti, T., & Nicolas, H. (2008). Estimating biophysical variables at 250m with reconstructed EOS/MODIS time series to monitor fragment landscapes. In: IEEE Int. Geoscience and Remote Sensing Symp., IGARSS’08, Boston, USA, vol 2, pp. 954–957.

  • Lefebvre, A., Corpetti, T., & Hubert-Moy, L. (2011). Ondelettes et thorie des vidences pour la classification oriente-objet. caractrisation et suivi des changements doccupation des sols de la mtropole de rennes. Revue Internationale de Gomatique, 21(3), 297–325. doi:10.3166/rig.21.297-325. URL http://rig.revuesonline.com/article.jsp?articleId=16563.

    Article  Google Scholar 

  • Lillesand, T., & Kiefer, R. (2000). Remote sensing and image interpretation, vol, edn. New York, USA.

  • Lobell, D. B., & Field, C. B. (2007). Global scale climatecrop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1), 014,002.

    Article  Google Scholar 

  • MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1, vol 6, pp. 281–297.

  • Montandon, L. M., & Small, E. E. (2008). The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sensing of Environment, 112(4), 1835–1845. doi:10.1016/j.rse.2007.09.007. URL http://www.sciencedirect.com/science/article/pii/S0034425707004245.

    Article  Google Scholar 

  • Moreau, P., Ruiz, L., Mabon, F., Raimbault, T., Durand, P., Delaby, L., Devienne, S., & Verts, F. (2012). Reconciling technical, economic and environmental efficiency of farming systems in vulnerable areas. Agriculture, Ecosystems & Environment, 147, 89–99.

    Article  Google Scholar 

  • Peeters, A. (2009). Importance, evolution, environmental impact and future challenges of grasslands and grassland-based systems in Europe. Grassland Science, 55(3), 113–125.

    Article  Google Scholar 

  • Poudevigne, I., & Alard, D. (1997). Landscape and agricultural patterns in rural areas: a case study in the Brionne basin, Normandy, France. Journal of Environmental Management, 50(4).

  • Price, J. (1994). How unique are spectral signatures? Remote Sensing of Environment, 49(3), 181–186.

    Article  Google Scholar 

  • Price JC (1998) An approach for analysis of reflectance spectra. Remote Sensing of Environment 64(3):316–330, DOI 10.1016/S0034-4257(98)00008-X. http://www.sciencedirect.com.gate3.inist.fr/science/article/B 6V6V-3V7SDNY-7/2/7242d4a9268104198d28dedbd8422f21

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107.

    Article  Google Scholar 

  • Rouse, J., Haas, R., Schell, J., Deering, D., & Harlan, J. (1974) Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC, Type III, Final report Greenbelt, MD, Etats-Unis, 371 p.

  • Soudani, K., François, C., le Maire, G., Le Dantec, V., & Dufrêne, E. (2006). Comparative analysis of IKONOS, SPOT, and ETM + data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sensing of Environment, 102(12), 161–175. doi:10.1016/j.rse.2006.02.004. URL http://www.sciencedirect.com/science/article/pii/S0034425706000733.

    Article  Google Scholar 

  • Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance modeling: the sail model. Remote Sensing of Environment, 16(2), 125–141.

    Article  Google Scholar 

  • Vermote, E., Tanre, D., Deuze, J., Herman, M., & Morcette, J. J. (1997). Second simulation of the satellite signal in the solar spectrum, 6s: an overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 675–686.

    Article  Google Scholar 

  • Vertès, F., Hatch, D., Velthof, G., Taube, F., Laurent, F., Loiseau, P., & Recous, S. (2007). Short-term and cumulative effects of grassland cultivation on nitrogen and carbon cycling in ley-arable rotations. In: Permanent and temporary grassland: Plant, Environment and Economy, 14th symposium of the European Grassland Federation Ghent, A. de Vliegler and L. Carlier, (eds.), Grassland Science in Europe, pp 227–246.

  • Viña, A., Gitelson, A. A., Nguy-Robertson, A. L., & Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12), 3468–3478. doi:10.1016/j.rse.2011.08.010.

    Article  Google Scholar 

  • Wang, J., Rich, P. M., Price, K. P., & Kettle, W. D. (2005). Relations between NDVI, grassland production, and crop yield in the central Great Plains. Geocarto International, 20(3), 5–11.

    Article  Google Scholar 

  • Wei, X. (2010). Biomass estimation: a remote sensing approach. Geography Compass, 4(11), 16351647.

    Article  Google Scholar 

  • Weiss, M., & Baret, F. (2010) CAN-EYE V6.1 User Manual. EMMAH, INRA.

  • Weiss, M., Baret, F., Myneni, R. B., Pragnère, A., & Knyazikhin, Y. (2000). Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie, 20(1), 3–22.

    Article  Google Scholar 

  • Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., & Coppin, P. (2004). Review of methods for in situ leaf area index (LAI) determination: part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121(1–2), 37–53.

    Article  Google Scholar 

  • Wright, C. K., & Wimberly, M. C. (2013). Recent land use change in the western corn belt threatens grasslands and wetlands. Proceedings of the National Academy of Sciences, 110(10), 4134–4139. doi:10.1073/pnas.1215404110. URL http://www.pnas.org/content/110/10/4134.

    Article  CAS  Google Scholar 

  • Wu J, Wang D, Bauer ME (2007) Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crops Research 102(1):33–42, DOI 10.1016/j.fcr.2007.01.003. http://www.sciencedirect.com/science/article/pii/S03784290070 00160

  • Zhang, C., & Guo, X. (2008). Monitoring northern mixed prairie health using broadband satellite imagery. International Journal of Remote Sensing, 29(8), 2257–2271.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the ANR SYSTERRA-ACASSYA program (ANR-08-STRA-01). We also want to thank the CNES for providing us with the satellite images, Sally Ferguson for revising the manuscript, and the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Dusseux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dusseux, P., Vertès, F., Corpetti, T. et al. Agricultural practices in grasslands detected by spatial remote sensing. Environ Monit Assess 186, 8249–8265 (2014). https://doi.org/10.1007/s10661-014-4001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-4001-5

Keywords

Navigation