Skip to main content
Log in

Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu-Natal, South Africa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The occurrences of pharmaceuticals and personal care products as emerging organic contaminants (EOCs) have been reported in several countries of the world except from African countries. This study was therefore conducted to investigate the occurrence of nine antibiotics, five antipyretics, atenolol, bezafibrate, and caffeine in wastewater and surface water samples from the Umgeni River. The water samples were extracted with solid-phase extraction using hydrophilic-lipophilic balance (HLB) and C-18 cartridges for the acidic and neutral drugs, respectively. The quantification was carried out with high-performance liquid chromatography-diode array detector (HPLC-DAD) using the standard addition method. The method limits of detections were in the range of 0.14–0.97 μg/L while the recoveries were between 53.8 and 108.1 %. The wastewater had 100 % occurrence of the analytes studied, with caffeine having the highest concentration at 61 ± 5 μg/L and nalidixic acid being the most observed antibiotic at 31 ± 3 μg/L. The waste treatment process reduced the influent concentrations by 43.0–94.2 % before discharge except for atenolol removal that is lower. The concentrations of the analytes were lower in the surface water with most compounds having concentrations below 10 μg/L except acetaminophen and atenolol. The estuary mouth and Blue Lagoon had the highest concentrations of some of the compounds in surface water which depict downstream load. The factors governing the fate and mobility of these compounds in this environment are not fully understood yet and will require further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aga, D. S. (Ed.). (2008). Fate of pharmaceuticals in the environment and in water treatment systems (p. 408). USA: CRC Press Taylor and Francis Group.

    Google Scholar 

  • APHA - American Public Health Association (2005). Standard methods for the examination of water and wastewater, 21st ed. Washington, DC.

  • Benito-Pena, E., Partal-Rodera, A. I., Leon-Gonzalez, M. E., & Moreno-Bondi, M. C. (2006). Evaluation of mixed mode solid phase extraction cartridges for the preconcentration of beta-lactam antibiotics in wastewater using liquid chromatography with UV-DAD detection. Analytica Chimica Acta, 556, 415–422.

    Article  CAS  Google Scholar 

  • Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., & Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environmental Science and Technology, 43, 597–603.

    Article  CAS  Google Scholar 

  • Blackwell, P. A., Lützhøft, H. H., Ma, H. P., Halling-Sørensen, B., Boxall, A. B. A., & Kay, P. (2004). Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC–UV and fluorescence detection. Talanta, 64, 1058–1064.

    Article  CAS  Google Scholar 

  • Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239, 229–246.

    Article  CAS  Google Scholar 

  • Carucci, A., Cappai, G., & Piredda, M. (2006). Biodegradability and toxicity of pharmaceuticals in biological wastewater treatment plants. Journal of Environmental Science and Health Part A—Toxic/Hazardous Substances and Environmental Engineering, 41(9), 1831–1842.

    Article  CAS  Google Scholar 

  • Castiglioni, S., Bagnati, R., Calamari, D., Fanelli, R., & Zuccato, E. (2005). A multiresidue analytical method using solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters. Journal of Chromatography A, 1092, 206–215.

    Article  CAS  Google Scholar 

  • Celiz, M. D., Tso, J., & Aga, D. S. (2009). Pharmaceutical metabolites in the environmental: analytical challenges and ecological risks. Environmental Toxicology and Chemistry, 28, 2473–2484.

    Article  CAS  Google Scholar 

  • Department of Water Affairs and Forestry, South Africa – (DWAF) (2008). Resource management plan for Inanda Dam: Final Draft pp. 81 available online: http://www.dwaf.gov.za/Documents/Other/RMP/Inanda/InandaRMPJuly2008.pdf. Accessed August 16, 2013.

  • Dougherty, J. A., Swarzenski, P. W., Dinicola, R. S., & Reinhard, M. (2010). Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around Liberty Bay, Puget Sound, Washington. Journal of Environmental Quality, 39, 1173–1180.

    Article  CAS  Google Scholar 

  • Esrafili, A., Yamini, Y., & Shariati, S. (2007). Hollow fiber-based liquid phase microextraction combined with high-performance liquid chromatography for extraction and determination of some antidepressant drugs in biological fluids. Analytica Chimica Acta, 604, 127–133.

    Article  CAS  Google Scholar 

  • Fick, J., Soderstro, H., Lindberg, R. H., Phan, C., Tysklind, M., & Larsson, D. G. J. (2009). Contamination of surface, ground, and drinking water from pharmaceutical production. Environmental Toxicology and Chemistry, 28(12), 2522–2527.

    Article  CAS  Google Scholar 

  • Fraga, C. G., Prazen, B. J., & Synovec, R. E. (2000). Comprehensive two-dimensional gas chromatography and chemometrics for the high-speed quantitative analysis of aromatic isomers in a jet fuel using the standard addition method and an objective retention time alignment algorithm. Analytical Chemistry, 72, 4154–4162.

    Article  CAS  Google Scholar 

  • Glassmeyer, S. T., Kolpin, D. W., Furlong, E. T., Focazio, M. J. (2008). Environmental presence and persistence of pharmaceuticals: An overview. In Diana S. Aga (Ed.), In Fate of pharmaceuticals in the environmental and in water treatment systems (pp. 3–52). FL, USA: CRC Press Taylor and Francis Group.

  • Godfrey, E., Woessner, W. W., & Benotti, M. J. (2007). Pharmaceuticals in on-site sewage effluent and ground water, Western Montana. Ground Water, 45(3), 263–271.

    Article  CAS  Google Scholar 

  • Haggard, B. E., Galloway, J. M., Green, W. R., & Meyer, M. T. (2006). Pharmaceuticals and other organic chemicals in selected north-central and northwestern Arkansas streams. Journal of Environmental Quality, 35(4), 1078–1087.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002a). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environmental: a review of recent research data. Toxicology Letters, 131, 5–17.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002b). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266, 175–189.

    Article  CAS  Google Scholar 

  • Heberer, T., Mechlinkski, A., Fanck, B., Knappe, A., Massmann, G., Pekdeger, A., & Fritz, B. (2004). Field studies on the fate and transport of pharmaceutical residues in bank filtration. Ground Water Monitoring and Remediation, 24, 70–77.

    Article  CAS  Google Scholar 

  • Hirsch, R., Ternes, T. A., Haberer, K., Mehlich, A., Ballwanz, F., & Kratz, K. L. (1998). Determination of antibiotics in different water compartments via liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography A, 518, 213–223.

    Article  Google Scholar 

  • Hirsch, R., Ternes, T. A., Haberer, K., & Kratz, K. L. (1999). Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 225, 109–118.

    Article  CAS  Google Scholar 

  • Holm, J. V., Rügge, K., Bjerg, P. L., & Christensen, H. (1995). Occurrence and distribution of pharmaceutical organic compounds in the groundwater down gradient of a landfill (Grindsted, Denmark). Environmental Science and Technology, 28, 1415–1420.

    Article  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science and Technology, 36(6), 1202–1211.

    Article  CAS  Google Scholar 

  • Kümmerer, K. (2001). Drugs in the environmental: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—a review. Chemosphere, 45, 957–969.

    Article  Google Scholar 

  • Kümmerer, K. (2009). Antibiotics in the aquatic environment—a review – Part I. Chemosphere, 75, 417–434.

    Article  Google Scholar 

  • Labadie, P., & Hill, E. M. (2007). Analysis of estrogens in river sediments by liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A, 1141(2), 174–181.

    Article  CAS  Google Scholar 

  • Labadie, P., Cundy, A. B., Stone, K., Andrews, M., Valbonesi, S., & Hill, E. M. (2007). Evidence for the migration of steroidal estrogens through river bed sediments. Environmental Science and Technology, 41, 4299–4304.

    Article  CAS  Google Scholar 

  • Lapworth, D. J., Baran, N., Stuart, M. E., & Ward, R. S. (2012). Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environmental Pollution, 163, 287–303.

    Article  CAS  Google Scholar 

  • Larsson, D. G., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148, 751–755.

    Article  CAS  Google Scholar 

  • Li, J.-D., Cai, Y.-Q., Shi, Y. L., Mou, S. F., & Jiang, G. B. (2007). Determination of sulfonamide compounds in sewage and river by mixed hemimicelles solid-phase extraction prior to liquid chromatography–spectrophotometry. Journal of Chromatography A, 1139, 178–184.

    Article  CAS  Google Scholar 

  • Li, D., Yang, M., Hu, J., Ren, L., Zhang, Y., Chang, H., & Li, K. (2008). Determination and fate of oxytetracycline and related compounds in oxyteracycline production wastewater and the receiving river. Environmental Toxicology and Chemistry, 27, 80–86.

    Article  CAS  Google Scholar 

  • Li, D., Yu, T., Zhang, Y., Yang, M., Li, Z., Liu, M., & Qi, R. (2010). Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Applied and Environmental Microbiology, 76(11), 3444–3451.

    Article  CAS  Google Scholar 

  • Lindqvist, N., Tuhkanen, T., & Kronberg, L. (2005). Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Research, 39, 2219–2228.

    Article  CAS  Google Scholar 

  • Löffler, D., & Ternes, T. A. (2003). Determination of acidic pharmaceuticals, antibiotics and ivermectin in river sediment using liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1021, 133–144.

    Article  Google Scholar 

  • Loraine, G. A., & Pettigrove, M. E. (2006). Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in Southern California. Environmental Science and Technology, 40(3), 687–695.

    Article  CAS  Google Scholar 

  • Miao, X. S., Bishay, F., Chen, M., & Metcalfe, C. D. (2004). Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental Science and Technology, 38, 3533–3541.

    Article  CAS  Google Scholar 

  • Murray, K. E., Thomas, S. M., & Bodour, A. A. (2010). Prioritizing research for trace pollutants and emerging contaminants in the freshwater environmental. Environmental Pollution, 158, 3462–3471.

    Article  CAS  Google Scholar 

  • Pal, A., Gin, A. Y.-C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on fresh water resources: review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408, 6062–6069.

    Article  CAS  Google Scholar 

  • Rabiet, M., Togola, A., Brissaud, F., Seidel, J. L., Budzinski, H., & Elbaz-Poulichet, F. (2006). Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean Catchment. Environmental Science and Technology, 40(17), 5282–5288.

    Article  CAS  Google Scholar 

  • Reyes-Contreras, C., Domínguez, C., & Bayona, J. M. (2012). Determination of nitrosamines and caffeine metabolites in wastewaters using gas chromatography mass spectrometry and ionic liquid stationary phases. Journal of Chromatography A, 1261, 164–170.

    Article  CAS  Google Scholar 

  • Rodil, R., Quintana, J. B., López-Mahía, P., Muniategui-Lorenzo, S., & Prada-Rodríguez, D. (2009). Multi-residue analytical method for the determination of emerging pollutants in water by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1216, 2958–2969.

    Article  CAS  Google Scholar 

  • Schriks, M., Heringa, M. B., van der Kooi, M. M., de Voogt, P., & van Wezel, A. P. (2010). Toxicological relevance of emerging contaminants for drinking water quality. Water Research, 44(2), 461–476.

    Article  CAS  Google Scholar 

  • Soulides, D. A. (1965). Antibiotics in soils: Vii. Production of streptomycin and tetracyclines in soil. Soil Science, 100, 200–206.

    Article  CAS  Google Scholar 

  • Stockwell, V. O., & Duffy, B. (2012). Use of antibiotics in plant agriculture. Scientific and Technical Review of the Office International des Epizooties, 31(1), 199–210.

    CAS  Google Scholar 

  • Swartz, C. H., Reddy, S., Benotti, M. J., Yin, H. F., Barber, L. B., Brownawell, B. J., & Rudel, R. A. (2006). Steroid estrogens, nonylphenolethoxylate metabolites, and other wastewater contaminants in groundwater affected by a residential septic system on Cape Cod, MA. Environmental Science and Technology, 40, 4894–4902.

    Article  CAS  Google Scholar 

  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245–3260.

    Article  CAS  Google Scholar 

  • Ternes, T., Bonerz, M., & Schmidt, T. (2001). Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, 938, 175–185.

    Article  CAS  Google Scholar 

  • UIDP - Umgungundlovu IDP (2001). Phase one: Part 3 - Analysis report 7: environmental planning. KwaZulu-Natal Provincial Government. Available on: http://devplan.kzntl.gov.za/Municipal/IDPs/uMgungundlovu/Phase%201%20Analysis/uM%20%20Part%203%20Enviro nm ent%20SQ%207.doc. Accessed August 12, 2013.

  • Van der Zel. (1975). Umgeni River catchment analysis. Water SA, 1(2), 70.

  • Watanabe, N., Bergamaschi, B. A., Loftin, K. A., Meyer, M. T., & Harter, T. (2010). Use and environmental occurrence of antibiotics in free stall dairy farms with manure forage fields. Environmental Science and Technology, 44, 6591–6600.

    Article  CAS  Google Scholar 

  • Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Costanzo, S. D. (2009). The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Science of the Total Environment, 407, 2711–2723.

    Article  CAS  Google Scholar 

  • Xie, Z., & Ebinghaus, R. (2008). Analytical methods for the determination of emerging organic contaminants in the atmosphere. Analytica Chimica Acta, 610, 156–178.

    Article  CAS  Google Scholar 

  • Yang, S., & Carlson, K. H. (2004). Solid-phase extraction-high-performance liquid chromatography-ion trap mass spectrometry for analysis of trace concentrations of macrolide antibiotics in natural and waste water matrices. Journal of Chromatography A, 1038(1–2), 141–155.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by University of KwaZulu-Natal (UKZN) postdoctoral research grant. The authors also acknowledge the support of the Technical staff members of the UKZN School of Chemistry, Westville. The authors also acknowledge Redeemer’s University for postdoctoral research study leave.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foluso O. Agunbiade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agunbiade, F.O., Moodley, B. Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu-Natal, South Africa. Environ Monit Assess 186, 7273–7291 (2014). https://doi.org/10.1007/s10661-014-3926-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3926-z

Keyword

Navigation