Skip to main content

Advertisement

Log in

Spatial distribution and source identification of trace elements in topsoil from heavily industrialized region, Aliaga, Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Topsoil samples (n = 40) were collected from a heavily industrialized region in Turkey. The region includes several scrap processing iron–steel plants with electric arc furnaces (EAFs), a petroleum refinery, a petrochemical complex, steel rolling mills, a natural gas-fired power plant, ship-breaking yards and very dense transportation activities. The region has undergone a rapid transition from an agricultural region to a heavily industrialized region in the last three decades. Collected soil samples were analyzed for 48 trace elements using inductively coupled plasma-mass spectrometry (ICP-MS). The elemental distribution pattern in the region indicated that Nemrut area with dense iron–steel production activities was a hotspot for elemental pollution. In addition to crustal elements, concentrations of anthropogenic trace elements (i.e., Fe, Zn, Pb, Mn, Cu, Cd, Cr and Mo) were very high in the area influencing many parts of the region. Elemental compositions of fugitive sources polluting the soil (i.e., paved and unpaved roads, slag piles, EAFs filter dust piles and coal piles) were also determined. The methods (enrichment factors [EFs] and the index of geoaccumulation [I geo]) used for determination of pollution status of soil showed that Cr, Ag, Zn, As and Pb were the strongly contaminating elements for the region. Principal component analysis (PCA) clearly indicated that anthropogenic sources (steel production, refinery and petrochemical processes and traffic) were important sources in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acosta, J. A., Cano, A. F., Arocena, J. M., Debela, F., & Martínez-Martínez, S. (2009). Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma, 149(1–2), 101–109. doi:10.1016/j.geoderma.2008.11.034.

    Article  CAS  Google Scholar 

  • Anatolaki, C., & Tsitouridou, R. (2007). Atmospheric deposition of nitrogen, sulfur and chloride in Thessaloniki, Greece. Atmospheric Research, 85(3–4), 413–428. doi:10.1016/j.atmosres.2007.02.010.

    Article  CAS  Google Scholar 

  • Ashbaugh, L. L., Carvacho, O. F., Brown, M. S., Chow, J. C., Watson, J. G., & Magliano, K. C. (2003). Soil sample collection and analysis for the fugitive dust characterization study. Atmospheric Environment, 37(9–10), 1163–1173. doi:10.1016/S1352-2310(02)01022-1.

    Article  CAS  Google Scholar 

  • ATSDR. (2005). Toxicological profile for nickel. Atlanta: Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  • Azimi, S., Rocher, V., Muller, M., Moilleron, R., & Thevenot, D. R. (2005). Sources, distribution and variability of hydrocarbons and metals in atmospheric deposition in an urban area (Paris, France). Science of the Total Environment, 337(1–3), 223–239. doi:10.1016/j.scitotenv.2004.06.020.

    Article  CAS  Google Scholar 

  • Beuck, H., Quass, U., Klemm, O., & Kuhlbusch, T. A. J. (2011). Assessment of sea salt and mineral dust contributions to PM10 in NW Germany using tracer models and positive matrix factorization. Atmospheric Environment, 45(32), 5813–5821. doi:10.1016/j.atmosenv.2011.07.010.

    Article  CAS  Google Scholar 

  • Canbay, M., Aydin, A., & Kurtulus, C. (2010). Magnetic susceptibility and heavy-metal contamination in topsoils along the Izmit Gulf coastal area and IZAYTAS (Turkey). Journal of Applied Geophysics, 70(1), 46–57. doi:10.1016/j.jappgeo.2009.11.002.

    Article  Google Scholar 

  • CCME. (2007). Canadian soil quality guidelines for the protection of environmental and human health. Quebec: Canadian Council of Ministers of the Environment.

    Google Scholar 

  • Cetin, B., Yatkin, S., Bayram, A., & Odabasi, M. (2007). Ambient concentrations and source apportionment of PCBs and trace elements around an industrial area in Izmir, Turkey. Chemosphere, 69(8), 1267–1277. doi:10.1016/j.chemosphere.2007.05.064.

    Article  CAS  Google Scholar 

  • Chabukdhara, M., & Nema, A. K. (2013). Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicology and Environmental Safety, 87, 57–64. doi:10.1016/j.ecoenv.2012.08.032.

    Article  CAS  Google Scholar 

  • Chen, T. B., Wong, J. W. C., Zhou, H. Y., & Wong, M. H. (1997). Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environmental Pollution, 96(1), 61–68. doi:10.1016/S0269-7491(97)00003-1.

    Article  CAS  Google Scholar 

  • Chen, T., Liu, X., Zhu, M., Zhao, K., Wu, J., Xu, J., et al. (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban–rural transitional area of Hangzhou, China. Environmental Pollution, 151(1), 67–78. doi:10.1016/j.envpol.2007.03.004.

    Article  CAS  Google Scholar 

  • Cheng, H., Li, M., Zhao, C., Li, K., Peng, M., Qin, A., et al. (2014). Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration, in press (0), doi:10.1016/j.gexplo.2013.08.012.

  • Davis, H. T., Marjorie Aelion, C., McDermott, S., & Lawson, A. B. (2009). Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environmental Pollution, 157(8–9), 2378–2385. doi:10.1016/j.envpol.2009.03.021.

    Article  CAS  Google Scholar 

  • Díez, M., Simón, M., Martín, F., Dorronsoro, C., García, I., & Van Gestel, C. A. M. (2009). Ambient trace element background concentrations in soils and their use in risk assessment. Science of the Total Environment, 407(16), 4622–4632. doi:10.1016/j.scitotenv.2009.05.012.

    Article  Google Scholar 

  • Dragovic, S., Mihailovic, N., & Gajić, B. (2008). Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere, 72(3), 491–495. doi:10.1016/j.chemosphere.2008.02.063.

    Article  CAS  Google Scholar 

  • Eroglu, I., & Bozyigit, R. (2013). The natural and humanitarian factors affecting the land use in Aliağa. Marmara Cografya Dergisi, 27, 353–400 (in Turkish).

    Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324. doi:10.1016/S0269-7491(00)00243-8.

    Article  CAS  Google Scholar 

  • Gemici, Ü., Tarcan, G., Melis Somay, A., & Akar, T. (2009). Factors controlling the element distribution in farming soils and water around the abandoned Halıköy mercury mine (Beydağ, Turkey). Applied Geochemistry, 24(10), 1908–1917. doi:10.1016/j.apgeochem.2009.07.004.

    Article  CAS  Google Scholar 

  • Gerdol, R., Bragazza, L., Marchesini, R., Alber, R., Bonetti, L., Lorenzoni, G., et al. (2000). Monitoring of heavy metal deposition in Northern Italy by moss analysis. Environmental Pollution, 108(2), 201–208. doi:10.1016/S0269-7491(99)00189-X.

    Article  CAS  Google Scholar 

  • Guo, G., Wu, F., Xie, F., & Zhang, R. (2012). Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. Journal of Environmental Sciences, 24(3), 410–418. doi:10.1016/S1001-0742(11)60762-6.

    Article  CAS  Google Scholar 

  • Han, B., Bai, Z., Ji, H., Guo, G., Wang, F., Shi, G., et al. (2009). Chemical characterizations of PM10 fraction of paved road dust in Anshan, China. Transportation Research Part D: Transport and Environment, 14(8), 599–603. doi:10.1016/j.trd.2009.07.010.

    Article  Google Scholar 

  • Horckmans, L., Swennen, R., Deckers, J., & Maquil, R. (2005). Local background concentrations of trace elements in soils: a case study in the Grand Duchy of Luxembourg. CATENA, 59(3), 279–304. doi:10.1016/j.catena.2004.09.004.

    Article  CAS  Google Scholar 

  • Iqbal, J., & Shah, M. H. (2011). Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan. Journal of Hazardous Materials, 192(2), 887–898. doi:10.1016/j.jhazmat.2011.05.105.

    Article  CAS  Google Scholar 

  • Ismail, M. H. S., Zhang, X. T., & Lazim, M. F. M. (2013). Removal of boron and arsenic from petrochemical wastewater by using aquatic booster as adsorbent. Polish Journal of Environmental Studies, 22(2), 403–408.

    CAS  Google Scholar 

  • Karanasiou, A. A., Siskos, P. A., & Eleftheriadis, K. (2009). Assessment of source apportionment by Positive Matrix Factorization analysis on fine and coarse urban aerosol size fractions. Atmospheric Environment, 43(21), 3385–3395. doi:10.1016/j.atmosenv.2009.03.051.

    Article  CAS  Google Scholar 

  • Kim, E., & Hopke, P. K. (2004). Source apportionment of fine particles in Washington, DC, utilizing temperature-resolved carbon fractions. Journal of the Air & Waste Management Association, 54(7), 773–785.

    Article  CAS  Google Scholar 

  • Ko, B.-G., Park, S.-J., Jung, G.-B., Kim, M.-K., Kim, G.-Y., Hong, S.-Y., et al. Characteristics of soil heavy metal contents in the agricultural areas near closed mine in Korea. In R. J. Gilkes, Prakongkep, N., editors (Ed.), Symposium 3.5.1 Heavy metal contaminated soils. 19th World Congress of Soil Science; Soil Solutions for a Changing World, Brisbane, Australia, 2010 (pp. 27–30): IUSS.

  • Kong, S., Ji, Y., Lu, B., Chen, L., Han, B., Li, Z., et al. (2011). Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmospheric Environment, 45(30), 5351–5365. doi:10.1016/j.atmosenv.2011.06.050.

    Article  CAS  Google Scholar 

  • Koz, B., Cevik, U., & Akbulut, S. (2012). Heavy metal analysis around Murgul (Artvin) copper mining area of Turkey using moss and soil. Ecological Indicators, 20, 17–23. doi:10.1016/j.ecolind.2012.02.002.

    Article  CAS  Google Scholar 

  • Kumru, M. N., & Bakac, M. (2003). R-mode factor analysis applied to the distribution of elements in soils from the Aydın basin, Turkey. Journal of Geochemical Exploration, 77(2–3), 81–91. doi:10.1016/S0375-6742(02)00271-6.

    Article  CAS  Google Scholar 

  • Li, X., & Feng, L. (2012). Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, Northwest of China. Atmospheric Environment, 47, 58–65. doi:10.1016/j.atmosenv.2011.11.041.

    Article  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853. doi:10.1016/j.scitotenv.2013.08.090.

    Article  Google Scholar 

  • Lin, H.-Y., Hung, C.-H., Yuan, C.-S., Chen, C.-J., Chen, W.-C., Chiang, S.-W., et al. (2008). Characteristics and source identification of roadside suspended particles. Transportation Research Part D: Transport and Environment, 13(8), 531–538. doi:10.1016/j.trd.2008.09.013.

    Article  Google Scholar 

  • Line, D. E., Wu, J., Arnold, J. A., Jennings, G. D., & Rubin, A. R. (1997). Water quality of first flush runoff from 20 industrial sites. Water Environment Research, 69(3), 305–310. doi:10.2175/106143097x125489.

    Article  CAS  Google Scholar 

  • Loska, K., Wiechuła, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30(2), 159–165. doi:10.1016/S0160-4120(03)00157-0.

    Article  CAS  Google Scholar 

  • Lu, S., Wang, H., & Guo, J. Magnetic response of heavy metals pollution in urban soils: magnetic proxy parameters as an indicator of heavy metals pollution. In R. J. Gilkes, Prakongkep, N. (Eds.), Working Group 3.3 Soils in urban and industrial areas. 19th World Congress of Soil Science; Soil Solutions for a Changing World, Brisbane, Australia, 2010 (pp. 32–35): IUSS.

  • Luo, X.-S., Yu, S., Zhu, Y.-G., & Li, X.-D. (2012). Trace metal contamination in urban soils of China. Science of the Total Environment, 421–422(0), 17–30. doi:10.1016/j.scitotenv.2011.04.020.

    Article  Google Scholar 

  • Maas, S., Scheifler, R., Benslama, M., Crini, N., Lucot, E., Brahmia, Z., et al. (2010). Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environmental Pollution, 158(6), 2294–2301. doi:10.1016/j.envpol.2010.02.001.

    Article  CAS  Google Scholar 

  • Mansha, M., Ghauri, B., Rahman, S., & Amman, A. (2012). Characterization and source apportionment of ambient air particulate matter (PM2.5) in Karachi. Science of the Total Environment, 425, 176–183. doi:10.1016/j.scitotenv.2011.10.056.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Nemerow, N. L. (1991). Stream, lake, estuary, and ocean pollution: Van Nostrand-Reinhold.

  • Odabasi, M., Bayram, A., Elbir, T., Seyfioglu, R., Dumanoglu, Y., & Ornektekin, S. (2010). Investigation of soil concentrations of persistent organic pollutants, trace rlements, and anions due to iron–steel plant emissions in an industrial region in Turkey. Water, Air, & Soil Pollution, 213(1–4), 375–388. doi:10.1007/s11270-010-0392-2.

    Article  CAS  Google Scholar 

  • Ozkan, R., Sener, M., Helvaci, C., & Sener, M. F. (2011). Hydrothermal alterations and relationship with thermal waters at Aliağa (İzmir) geothermal field. Bulletin of the Earth Sciences, 32, 1–20.

    Google Scholar 

  • Patil, R. S., Kumar, R., Menon, R., Shah, M. K., & Sethi, V. (2013). Development of particulate matter speciation profiles for major sources in six cities in India. Atmospheric Research, 132–133, 1–11. doi:10.1016/j.atmosres.2013.04.012.

    Article  Google Scholar 

  • Rahman, M. M., & Naidu, R. Concentrations of arsenic and other metals in agricultural soils of Bangladesh. In R. J. Gilkes, Prakongkep, N. (Eds.), Symposium 3.5.1 Heavy metal contaminated soils. 19th World Congress of Soil Science; Soil Solutions for a Changing World, Brisbane, Australia, 2010 (pp. 42–45): IUSS.

  • Rodríguez-Salazar, M., Morton-Bermea, O., Hernández-Álvarez, E., Lozano, R., & Tapia-Cruz, V. (2011). The study of metal contamination in urban topsoils of Mexico City using GIS. Environmental Earth Sciences, 62(5), 899–905. doi:10.1007/s12665-010-0584-5.

    Article  Google Scholar 

  • Salvador, P., Artinano, B., Alonso, D. G., Querol, X., & Alastuey, A. (2004). Identification and characterisation of sources of PM10 in Madrid (Spain) by statistical methods. Atmospheric Environment, 38(3), 435–447. doi:10.1016/j.atmosenv.2003.09.070.

    Article  CAS  Google Scholar 

  • Senguler, I., Sener, M., & Kok, M. V. (2000). Paleotemperature Analysis of Aliaga (Izmir, Turkey) Geothermal Field. Energy Sources, 22(4), 357–362. doi:10.1080/00908310050013956.

    Article  CAS  Google Scholar 

  • Skrbic, B., & Durisic-Mladenovic, N. (2010). Chemometric interpretation of heavy metal patterns in soils worldwide. Chemosphere, 80(11), 1360–1369. doi:10.1016/j.chemosphere.2010.06.010.

    Article  CAS  Google Scholar 

  • Sofilić, T., Rastovčan-Mioč, A., Cerjan-Stefanović, Š., Novosel-Radović, V., & Jenko, M. (2004). Characterization of steel mill electric-arc furnace dust. Journal of Hazardous Materials, 109(1–3), 59–70. doi:10.1016/j.jhazmat.2004.02.032.

    Article  Google Scholar 

  • Solgi, E., Esmaili-Sari, A., Riyahi-Bakhtiari, A., & Hadipour, M. (2012). Soil contamination of metals in the three industrial estates, Arak, Iran. Bulletin of Environmental Contamination and Toxicology, 88(4), 634–638. doi:10.1007/s00128-012-0553-7.

    Article  CAS  Google Scholar 

  • Srimuruganandam, B., & Shiva Nagendra, S. M. (2012). Application of positive matrix factorization in characterization of PM10 and PM2.5 emission sources at urban roadside. Chemosphere, 88(1), 120–130. doi:10.1016/j.chemosphere.2012.02.083.

    Article  CAS  Google Scholar 

  • Srinivasa Gowd, S., Ramakrishna Reddy, M., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174(1–3), 113–121. doi:10.1016/j.jhazmat.2009.09.024.

    Article  CAS  Google Scholar 

  • Stortini, A. M., Freda, A., Cesari, D., Cairns, W. R. L., Contini, D., Barbante, C., et al. (2009). An evaluation of the PM2.5 trace elemental composition in the Venice Lagoon area and an analysis of the possible sources. Atmospheric Environment, 43(40), 6296–6304. doi:10.1016/j.atmosenv.2009.09.033.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265. doi:10.1029/95RG00262.

    Article  Google Scholar 

  • Temple, P. J., & Linzon, S. N. (1976). Boron as a phytotoxic air pollutant. Journal of the Air Pollution Control Association, 26(5), 498–499. doi:10.1080/00022470.1976.10470278.

    Article  CAS  Google Scholar 

  • TSMS (2013). Turkish State Meteorological Service. http://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=IZMIR#sfB. Accessed October 2013.

  • Tume, P., Bech, J., Reverter, F., Bech, J., Longan, L., Tume, L., et al. (2011). Concentration and distribution of twelve metals in Central Catalonia surface soils. Journal of Geochemical Exploration, 109(1–3), 92–103. doi:10.1016/j.gexplo.2010.10.013.

    Article  CAS  Google Scholar 

  • U.S. Geological Survey (2013). Mineral commodity summaries 2013 (pp. 198). U.S. Geological Survey.

  • Varrica, D., Aiuppa, A., & Dongarrà, G. (2000). Volcanic and anthropogenic contribution to heavy metal content in lichens from Mt. Etna and Vulcano island (Sicily). Environmental Pollution, 108(2), 153–162. doi:10.1016/S0269-7491(99)00246-8.

    Article  CAS  Google Scholar 

  • VROM (2000). Circular on target values and intervention values for soil remediation Annex A: target values, soil remediation intervention values and indicative levels for serious contamination (pp. Page 8). Dutch Ministry of Housing, Spatial Planning and Environment.

  • Wang, X. S. (2013). Magnetic properties and heavy metal pollution of soils in the vicinity of a cement plant, Xuzhou (China). Journal of Applied Geophysics, 98, 73–78. doi:10.1016/j.jappgeo.2013.08.008.

    Article  Google Scholar 

  • Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99–107. doi:10.1016/j.microc.2009.09.014.

    Article  CAS  Google Scholar 

  • Yatkin, S., & Bayram, A. (2008). Determination of major natural and anthropogenic source profiles for particulate matter and trace elements in Izmir, Turkey. Chemosphere, 71(4), 685–696. doi:10.1016/j.chemosphere.2007.10.070.

    Article  CAS  Google Scholar 

  • Yatkin, S., & Bayram, A. (2011). Investigation of chemical compositions of urban, industrial, agricultural, and rural top-soils in Izmir, Turkey. CLEAN – Soil, Air, Water, 39(6), 522–529. doi:10.1002/clen.201000117.

    Article  CAS  Google Scholar 

  • Yaylalı-Abanuz, G. (2011). Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchemical Journal, 99(1), 82–92. doi:10.1016/j.microc.2011.04.004.

    Article  Google Scholar 

  • Yesilonis, I. D., Pouyat, R. V., & Neerchal, N. K. (2008). Spatial distribution of metals in soils in Baltimore, Maryland: role of native parent material, proximity to major roads, housing age and screening guidelines. Environmental Pollution, 156(3), 723–731. doi:10.1016/j.envpol.2008.06.010.

    Article  CAS  Google Scholar 

  • Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355(1–3), 176–186. doi:10.1016/j.scitotenv.2005.02.026.

    Article  Google Scholar 

  • Yuan, G.-L., Sun, T.-H., Han, P., Li, J., & Lang, X.-X. (2014). Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: typical urban renewal area in Beijing, China. Journal of Geochemical Exploration, 136, 40–47. doi:10.1016/j.gexplo.2013.10.002.

    Article  CAS  Google Scholar 

  • Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution, 142(3), 501–511. doi:10.1016/j.envpol.2005.10.028.

    Article  CAS  Google Scholar 

  • Zhao, Y.-F., Shi, X.-Z., Huang, B., Yu, D.-S., Wang, H.-J., Sun, W.-X., et al. (2007). Spatial distribution of heavy metals in agricultural soils of an industry-based peri-urban area in Wuxi, China. Pedosphere, 17(1), 44–51. doi:10.1016/S1002-0160(07)60006-X.

    Article  Google Scholar 

  • Zhao, Y., Wang, Z., Sun, W., Huang, B., Shi, X., & Ji, J. (2010). Spatial interrelations and multi-scale sources of soil heavy metal variability in a typical urban–rural transition area in Yangtze River Delta region of China. Geoderma, 156(3–4), 216–227. doi:10.1016/j.geoderma.2010.02.020.

    Article  CAS  Google Scholar 

  • Zhao, L., Xu, Y., Hou, H., Shangguan, Y., & Li, F. (2014). Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Science of the Total Environment, 468–469, 654–662. doi:10.1016/j.scitotenv.2013.08.094.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the “Assessment of current status of Aliaga industrial region for air pollution” project conducted by Dokuz Eylul University and supported by the Turkish Ministry of Environment and Urbanism and by the industries located in Aliaga region. We also thank the Scientific and Technological Research Council of Turkey (TUBITAK) for scholarship support for the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melik Kara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kara, M., Dumanoğlu, Y., Altıok, H. et al. Spatial distribution and source identification of trace elements in topsoil from heavily industrialized region, Aliaga, Turkey. Environ Monit Assess 186, 6017–6038 (2014). https://doi.org/10.1007/s10661-014-3837-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3837-z

Keywords

Navigation