Skip to main content

Advertisement

Log in

Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Environmental and biological reef monitoring was conducted in Almirante Bay (Bahía Almirante) in Bocas del Toro, Panama, to assess impacts from anthropogenic developments. An integrated monitoring investigated how seasonal temperature stress, turbidity, eutrophication and physical impacts threatened reef health and biodiversity throughout the region. Environmental parameters such as total suspended solids [TSS], carbon isotopes (δ13C), C/N ratios, chlorophyll a, irradiance, secchi depth, size fractions of the sediments and isotope composition of dissolved inorganic carbon [DIC] of the water were measured throughout the years 2010 and 2011 and were analysed in order to identify different impact sources. Compared to data from Collin et al. (Smithsonian Contributions to the Marine Sciences 38:324–334, 2009) chlorophyll a has doubled at sites close to the city and the port Almirante (from 0.46–0.49 to 0.78–0.97 μg l−1) and suspension load increased, visible by a decrease in secchi depth values. Visibility decreased from 9-13 m down to 4 m at the bay inlet Boca del Drago, which is strongly exposed to river run off and dredging for the shipping traffic. Eutrophication and turbidity levels seemed to be the determining factor for the loss of hard coral diversity, most significant at chlorophyll a levels higher than 0.5 μg l−1 and TSS levels higher than 4.7 mg l−1. Hard coral cover within the bay has also declined, at some sites down to <10 % with extremely low diversities (7 hard coral species). The hard coral species Porites furcata dominated the reefs in highly impacted areas and showed a strong recovery after bleaching and a higher tolerance to turbidity and eutrophication compared to other hard coral species in the bay. Serious overfishing was detected in the region by a lack of adult and carnivorous fish species, such as grunts, snappers and groupers. Study sites less impacted by anthropogenic activities and/or those with local protection showed a higher hard coral cover and fish abundance; however, an overall loss of hard coral diversity was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aminot A, & Rey F (2000) Standard procedure for the determination of chlorophyll a by spectroscopic methods. ICES, Denmark

  • Anthony, K. R. N. (1999). Coral suspension feeding on fine particulate matter. Journal of Experimental Marine Biology and Ecology, 232, 85–106.

    Article  Google Scholar 

  • Anthony, K. R. N., & Fabricius, K. E. (2000). Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. Journal of Experimental Marine Biology and Ecology, 252, 221–253.

    Article  Google Scholar 

  • Aronson, R. B., Macintyre, I. G., Wapnick, C. M., & O'Neill, M. W. (2004). Phase shifts, alternative states, and the unprecedented convergence of two reef systems. Ecology, 85, 1876–1891.

    Article  Google Scholar 

  • Aronson, R. B., Macintyre, I. G., Lewis, S. A., & Hilbun, N. L. (2005). Emergent zonation and geographic convergence of coral reefs. Ecology, 86, 2586–2600.

    Article  Google Scholar 

  • Aronson, R. B., Bruno, J. F., Precht, W. F., Glynn, P. W., Harvell, C. D., Kaufman, L., et al. (2003). Causes of coral reef degradation. Science, 302, 1502–1504.

    Article  CAS  Google Scholar 

  • Norström, A. V., Nyström, M., Lokrantz, J., & Folke, C. (2009). Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Marine Ecology Progress Series, 376, 295–306.

    Article  Google Scholar 

  • Bellwood, D. R., Hoey, A. S., & Choat, J. H. (2003). Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecology Letters, 6, 281–285.

    Article  Google Scholar 

  • Berry, K. E., Seemann, J., Dellwig, O., Struck, U., Wild, C., Leinfelder, R. (2013). Sources and spatial distribution of heavy metals in scleractinian coral tissues and sediments from the Bocas del Toro Archipelago, Panama. Environ Monit Assess:1–11.

  • Burke, L., Maidens, J., Spalding, M., Kramer, P., Green, E., Greenhalgh, S., Nobles, H., Kool, J. (2004). Reefs at risk in the Caribbean. World Resources Institute Washington DC.

  • Carballo-Bolaños, R., Seemann, J., Gonzalez, C. T. (2012). A field identification guide to hard corals of Bocas del Toro Archipelago, Panama. Smithsonian Tropical Research Institute, http://www.stri.si.edu/english/PDFs/201215_Hard_Coral_Identification_guide.pdf

  • Cesar, H., Burke, L. and Pet-Soede L. (2003). The economics of worldwide coral reef degradation. Cesar Environmental Economics Consulting (CEEC) 23.

  • Collin, R. (2005). Ecological monitoring and biodiversity surveys at the smithsonian tropical research Institute's Bocas Del Toro research station. Caribbean Journal of Science, 41, 367–373.

    Google Scholar 

  • Collin, R., D’Croz, L., Gondola, P., & Rosario, J. B. D. (2009). Climate and hydrological factors affecting variation in chlorophyll concentration and water clarity in the Bahia Almirante, Panama. Smithsonian Contributions to the Marine Sciences, 38, 324–334.

    Google Scholar 

  • Collin, R., Diaz, M. C., Norenburg, J. L., Rocha, R., Sanchez, J. A., Schulz, A., et al. (2005). Photographic identification guide to some common marine invertebrates of Bocas Del Toro, Panama. Caribbean Journal of Science, 41, 638–707.

    Google Scholar 

  • Cooper, T. F., Uthicke, S., Humphrey, C., & Fabricius, K. E. (2007). Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef. Estuarine, Coastal and Shelf Science, 74, 458–470.

    Article  Google Scholar 

  • Costa, O. S., Jr., Nimmo, M., & Attrill, M. J. (2008). Coastal nutrification in Brazil: a review of the role of nutrient excess on coral reef demise. Journal of South American Earth Sciences, 25, 257–270.

    Article  Google Scholar 

  • D’Croz, L., Del Rosario, J. B., & Gondola, P. (2005). The effect of fresh water runoff on the distribution of dissolved inorganic nutrients and plankton in the Bocas del Toro Archipelago, Caribbean Panama. Caribbean Journal of Science, 41, 414–429.

    Google Scholar 

  • De'ath, G., & Fabricius, K. (2010). Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecological Applications, 20, 840–850.

    Article  Google Scholar 

  • Diaz, M. C., & Rützler, K. (2001). Sponges: An essential component of Caribbean coral reefs. Bulletin of Marine Science, 69, 535–546.

    Google Scholar 

  • Dominici-Arosemena, A., & Wolff, M. (2005). Reef fish community structure in Bocas del Toro (Caribbean, Panama): gradients in habitat complexity and exposure. Caribbean Journal of Science, 41, 613–637.

    Google Scholar 

  • Edinger, E. N., Jompa, J., Limmon, G. V., Widjatmoko, W., & Risk, M. J. (1998). Reef degradation and coral biodiversity in Indonesia: effects of land-based pollution, destructive fishing practices and changes over time. Mar Poll Bull, 36, 617–630.

    Article  CAS  Google Scholar 

  • Edinger, E. N., Limmon, G. V., Jompa, J., Widjatmoko, W., Heikoop, J. M., & Risk, M. J. (2000). Normal coral growth rates on dying reefs: Are coral growth rates good indicators of reef health? Mar Poll Bull, 40, 404–425.

    Article  CAS  Google Scholar 

  • Elmhirst, T., Connolly, S., & Hughes, T. (2009). Connectivity, regime shifts and the resilience of coral reefs. Coral Reefs, 28, 949–957.

    Article  Google Scholar 

  • Fichez, R., Adjeroud, M., Bozec, Y. M., Breau, L., Chancerelle, Y., Chevillon, C., et al. (2005). A review of selected indicators of particle, nutrient and metal inputs in coral reef lagoon systems. Aquatic Living Resources, 18, 125–147.

    Article  CAS  Google Scholar 

  • Fry, B., & Sherr, E. B. (1984). δ13C measurements as indicators of carbon flow on marine and freshwater ecosystems. Contributions in Marine Science, 27, 13–47.

    CAS  Google Scholar 

  • Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A., & Watkinson, A. R. (2003). Long-term region-wide declines in Caribbean corals. Science, 301, 958–960.

    Article  CAS  Google Scholar 

  • Gartner, A., Lavery, P., & Smit, A. (2002). Use of delta 15N signatures of different functional forms of macroalgae and filter-feeders to reveal temporal and spatial patterns in sewage dispersal. Marine Ecology-Progress Series, 235, 63–73.

    Article  Google Scholar 

  • Glynn, P. W. (1996). Coral reef bleaching: facts, hypotheses and implications. Glob Change Biol, 2, 495–509.

    Article  Google Scholar 

  • Greb, L., Saric, B., Seyfried, H., Broszonn, T., Brauch, S., Gugau, G., et al. (1996). Ökologie und Sedimentologie eines rezenten Rampensystems an der Karibikküste von Panamá. Profil, 10, 1–168.

    Google Scholar 

  • Greer, L., Jackson, J. E., Curran, H. A., Guilderson, T., & Teneva, L. (2009). How vulnerable is Acropora cervicornis to environmental change? Lessons from the early to middle Holocene. Geology, 37, 263.

    Article  CAS  Google Scholar 

  • Grimsditch, G., & Salm, R. (2006). Coral reef resilience and resistance to bleaching. Gland, Switzerland: IUCN.

    Google Scholar 

  • Guerrón-Montero, C. (2005). Marine Protected Areas in Panama: Grassroots Activism and Advocacy. Human Organization, 64, 360–373.

    Google Scholar 

  • Guzmán, H. M. (2003). Caribbean coral reefs of Panama: Present status and future perspectives. In J. Cortes (Ed.), Latin American Coral Reefs Report (pp. 241–274). Amsterdam: Elsevier Science B.V.

    Chapter  Google Scholar 

  • Guzmán, H. M., & Jiménez, C. E. (1992). Contamination of coral reefs by heavy metals along the Caribbean coast of Central America (Costa Rica and Panama). Mar Poll Bull, 24, 554–561.

    Article  Google Scholar 

  • Guzmán, H. M., & Guevara, C. A. (1998a). Arrecifes coralinos de Bocas del Toro, Panamá: distribución, estructura y estado de conservación de los arrecifes continentales de la Laguna de Chiriquí y la Bahía Almirante. Revista de Biología Tropical, 46, 601–623.

    Google Scholar 

  • Guzmán, H. M., & Guevara, C. A. (1998b). Arrecifes coralinos de Bocas del Toro, Panamá: II. Distribución, estructura y estado de conservación de los arrecifes de las Islas Bastimentos, Solarte, Carenero y Colón. Revista de Biología Tropical, 46, 889–912.

    Google Scholar 

  • Guzmán, H. M., & Guevara, C. A. (1999). Arrecifes coralinos de Bocas del Toro, Panamá: distribución, estructura y estado de conservación de los arrecifes continentales de las islas Pastores, Crisobal, Popa y Cayo. Aqua Rev Biol Trop, 47, 659–675.

    Google Scholar 

  • Guzmán, H. M., & Guevara, C. A. (2001). Arrecifes coralinos de Bocas del Toro, Panamá: distribución, estructura y estado de conservación de los arrecifes continentales de Península Valiente. Revista de Biología Tropical, 49, 53–66.

    Google Scholar 

  • Guzmán, H. M., & García, E. M. (2002). Mercury levels in coral reefs along the Caribbean coast of Central America. Mar Poll Bull, 44, 1415–1420.

    Article  Google Scholar 

  • Guzmán, H. M., Barnes, P. A. G., Lovelock, C. E., & Feller, I. C. (2005). A site description of the CARICOMP mangrove, seagrass and coral reef sites in Bocas del Toro. Panama Caribb J Sci, 41, 430–440.

    Google Scholar 

  • Hawkins, J. P., Roberts, C. M., Hof, T. V., de Meyer, K., Tratalos, J., & Aldam, C. (1998). Effects of recreational scuba diving on Caribbean coral and fish communities. Conservation Biology, 13, 888–897.

    Article  Google Scholar 

  • Henkel, T. P., & Pawlik, J. R. (2005). Habitat use by sponge-dwelling brittlestars. Marine Biology, 146, 301–313.

    Article  Google Scholar 

  • Hodgson, G. (1999). A global assessment of human effects on coral reefs. Mar Poll Bull, 38, 345–355.

    Article  CAS  Google Scholar 

  • Hodgson, G. (2000). Coral reef monitoring and management using Reef Check. JICZM, 1, 169–176.

    Google Scholar 

  • Hodgson, G., Maun, L., Shuman, C. (2004). Reef Check Survey Manual. Reef Check, Institute of the Environment, University of California, Los Angeles, CA.

  • Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research, 50, 839–866.

    Article  Google Scholar 

  • Houlbrèque, F., & Ferrier-Pagès, C. (2009). Heterotrophy in tropical scleractinian corals. Biological Reviews, 84, 1–17.

    Article  Google Scholar 

  • Hughes, T. P. (1994). Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science, 265, 1547–1551.

    Article  CAS  Google Scholar 

  • Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., et al. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301, 929–933.

    Article  CAS  Google Scholar 

  • Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Hoegh-Guldberg, O., McCook, L., et al. (2007). Phase shifts, herbivory, and the resilience of coral reefs to climate change. Current Biology, 17, 360–365.

    Article  CAS  Google Scholar 

  • Jackson, J. B. C., & Buss, L. (1975). Alleopathy and spatial competition among coral reef invertebrates. PNAS, 72, 5160–5163.

    Article  CAS  Google Scholar 

  • Johannes, R. E. (1975). Chapter 2. Pollution and Degradation of Coral Reef Communities. In: Wood EJF, Johannes RE (eds) Elsevier Oceanography Series. Elsevier, pp13-51.

  • Kaufmann, K. W., & Thompson, R. C. (2005). Water temperature variation and the meteorological and hydrographic environment of Bocas del Toro, Panama. Caribbean Journal of Science, 41, 392–413.

    Google Scholar 

  • Lapointe, B. E. (1997). Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnology and Oceanography, 42, 1119–1131.

    Article  CAS  Google Scholar 

  • Leinfelder, R. R., Seemann, J., Heiss, G. A., Struck, U. (2012). Could ‘ecosystem atavisms’ help reefs to adapt to the Anthropocene? Proc 12th Int Coral Reef Symp ICRS2012_2B_2:5.

  • Lewis, J. B. (1964). Feeding and digestion in the tropical sea urchin Diadema antillarum philippi. Canadian Journal of Zoology, 42, 549–557.

    Article  CAS  Google Scholar 

  • Linton, D. M., & Warner, G. F. (2003). Biological indicators in the Caribbean coastal zone and their role in integrated coastal management. Ocean and Coastal Management, 46, 261–276.

    Article  Google Scholar 

  • Lirman, D., Orlando, B., Maciá, S., Manzello, D., Kaufman, L., Biber, P., et al. (2003). Coral communities of Biscayne Bay, Florida and adjacent offshore areas: diversity, abundance, distribution, and environmental correlates. Aquatic Conservation: Marine and Freshwater Ecosystems, 13, 121–135.

    Article  Google Scholar 

  • Macko, S., Ostrom, N. (1994). Pollution studies using stable isotopes. In: Lajtha K, Michener R (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publishing.

  • Marshall, P. A., & Baird, A. H. (2000). Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs, 19, 155–163.

    Article  Google Scholar 

  • McCann, K. S. (2000). The diversity stability debate. Nature, 405, 228–233.

    Article  CAS  Google Scholar 

  • Mejía, L. S., & Garzón-Ferreira, J. (2000). Estructura de comunidades de peces arrecifales en cuatro atolones del Archipiélago de San Andrés y Providencia (Caribe sur occidental). Revista de Biología Tropical, 48, 883–896.

    Google Scholar 

  • Mook, W. G. (2001). Environmental Isotopes in the hydrological cycle. Paris: Principles and application. Technical documents in hydrology.

    Google Scholar 

  • NOAA (2010) NOAA Coral Reef Watch operational 50-km satellite coral bleaching degree heating weeks product. NOAA Coral Reef Watch, http://coralreefwatch.noaa.gov/satellite/hdf/index.html

  • Oxenford, H., Roach, R., Brathwaite, A., Nurse, L., Goodridge, R., Hinds, F., et al. (2008). Quantitative observations of a major coral bleaching event in Barbados, Southeastern Caribbean. Climatic Change, 87, 435–449.

    Article  Google Scholar 

  • Porter, J. W. (1974). Community structure of coral reefs on opposite sides of the Isthmus of Panama. Science, 186, 543.

    Article  Google Scholar 

  • Rodríguez, J., & Villamizar, E. (2000). Reef fishes community structure of Playa Mero, Parque Nacional Morrocoy, Venezuela. Revista de Biología Tropical, 48, 107.

    Google Scholar 

  • Rogers, C. S. (1990). Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series, 62, 185–202.

    Article  Google Scholar 

  • Saric, M. B. (2005). Sedimentologie und Geobiologie von Riffassoziationen in der Bahía Almirante (Archipel von Bocas del Toro, Panamá). München: Ludwig-Maximilians-Universität.

    Google Scholar 

  • Sawall, Y., Teichberg, M., Seemann, J., Litaay, M., Jompa, J., & Richter, C. (2011). Nutritional status and metabolism of the coral Stylophora subseriata along a eutrophication gradient in Spermonde Archipelago (Indonesia). Coral Reefs, 30, 841–853.

    Article  Google Scholar 

  • Seemann, J. (2013). The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals. Journal of Experimental Marine Biology and Ecology, 442, 88–95.

    Article  CAS  Google Scholar 

  • Seemann, J., Sawall, Y., Auel, H., & Richter, C. (2012a). The use of lipids and fatty acids to measure the trophic plasticity of the coral Stylophora subseriata. Lipids, 48, 275–286.

    Article  Google Scholar 

  • Seemann, J., Carballo-Bolaños, R., Berry, K. L., González, C. T., Richter, C., Leinfelder, R. R. (2012b). Importance of heterotrophic adaptations of corals to maintain energy reserves. Proc 12th Int Coral Reef Symp ICRS2012_19A_4:6.

  • Selig, E. R., & Bruno, J. F. (2010). A global analysis of the effectiveness of marine protected areas in preventing coral loss. PLoS ONE, 5, e9278.

    Article  Google Scholar 

  • Smith V (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10,126–139.

    Google Scholar 

  • Sofonia, J. J., & Anthony, K. R. N. (2008). High-sediment tolerance in the reef coral Turbinaria mesenterina from the inner Great Barrier Reef lagoon (Australia). Estuarine, Coastal and Shelf Science, 78, 748–752.

    Article  Google Scholar 

  • Spurgeon, J. P. G. (1992). The economic valuation of coral reefs. Mar Poll Bull, 24, 529–536.

    Article  Google Scholar 

  • Van Duin, E. H. S., Blom, G., Los, F. J., Maffione, R., Zimmerman, R., Cerco, C. F., et al. (2001). Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth. Hydrobiol, 444, 25–42.

    Article  Google Scholar 

  • Weber, M., Lott, C., & Fabricius, K. E. (2006). Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. Journal of Experimental Marine Biology and Ecology, 336, 18–32.

    Article  CAS  Google Scholar 

  • Wilkinson, C. R., & Cheshire, A. C. (1990). Comparisons of sponge populations across the Barrier Reefs of Australia and Belize: Evidence for higher productivity in the Caribbean. Marine Ecology Progress Series, 67, 285–294.

    Article  Google Scholar 

  • Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P., & Polunin, N. V. C. (2006). Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Change Biol, 12, 2220–2234.

    Article  Google Scholar 

  • Yoshioka, P. M., & Yoshioka, B. B. (1989). Effects of wave energy, topographic relief and sediment transport on the distribution of shallow-water gorgonians of Puerto Rico. Coral Reefs, 8, 145–152.

    Article  Google Scholar 

  • Zea, S. (1993). Cover of sponges and other sessile organisms in rocky and coral reef habitats of Santa Marta, Colombian Caribbean Sea. Caribbean Journal of Science, 29, 75–88.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the von Pawel-Rammingen foundation and the German Academic Exchange Service (DAAD). We want to thank people from the Smithsonian Tropical Research Institute Bocas del Toro in particular Rachel Collin, Gabriel Jacome, Plinio Gondola and Eric Brown for their invaluable help, great support in organization, field work and space acquisition at the station. Special thanks to Ewgenija Kuhl for her great help in the isotope analysis and to Regine Blühdorn for the English correction. Thank you Claudio Richter for your supervision, helpful input, discussions and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina Seemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 6.72 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seemann, J., González, C.T., Carballo-Bolaños, R. et al. Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama. Environ Monit Assess 186, 1747–1763 (2014). https://doi.org/10.1007/s10661-013-3490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3490-y

Keywords

Navigation