Skip to main content
Log in

Arsenic concentration variability, health risk assessment, and source identification using multivariate analysis in selected villages of public water system, Lahore, Pakistan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper reports high levels and variability in arsenic (As) levels at locations identified as one of the highest As-contaminated locations in Pakistan. Groundwater pollution related to arsenic has been reported since many years in the areas lying in outskirts of District Lahore, Pakistan. A comparative study is done to determine temporal variations of As from three villages, i.e., Kalalanwala (KLW), Manga Mandi (MM), and Shamki Bhattian (SKB). Seventy-three percent of the 30 investigated samples ranging in depth from 20 to 200 m, show an increasing trend in variations of As concentration over a time span of 4 years and 87 % of samples exceeded the WHO standard of 10 μg/L for As while 77 % of samples have As concentration >50 μg/L (national standard). Further results indicate that high levels of As is accompanied with increase pH (r = 0.8) favoring desorption of As from minerals at higher pH under oxidizing conditions. For health risk assessment of arsenic, the average daily dose, hazard quotient (HQ), and cancer risk were calculated. The residents of the studied areas had toxic risk index in the order of SKB>KLW>MM, with 87 % of samples exceeding the typical toxic risk index 1.00 (ranging from 2.3–48.6) which was 83 % (ranging from 0.3–41) 4 years before. The results of the present study therefore indicate that arsenic concentrations are increasing in the area, which needs an immediate attention to provide alternate sources of water to save people at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed, M. F., Ahuja, S., Alauddin, M., Hug, S. J., Lloyd, J. R., Pfaff, A., et al. (2006). Ensuring safe drinking water in Bangladesh. Science, 314, 1686–1688.

  • Alauddin, M., Rahman, M. N., Munir, A. K. M., Mahiyuddin, G., & Hossin, B. B. (2000). Temporal variation of inorganic arsenic in groundwater of two contaminated tubewells. Journal of Applied Science and Technology, 01(01), 33–38.

    Google Scholar 

  • Amini, M., Abbaspour, K. C., Berg, M., Winkel, L., Hug, S. J., Hoehn, E., et al. (2008). Statistical modeling of global geogenic arsenic contamination in groundwater. Environmental Science and Technology, 42, 3669–3675.

    Article  CAS  Google Scholar 

  • Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., & Shah, A. (2008). Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromis mossambicus of polluted Manchar Lake. Chemosphere, 70(10), 1845–1856.

    Article  CAS  Google Scholar 

  • Arain, M. B., Kazi, T. G., Baig, J. A., Jamali, M. K., Afridi, H. I., & Shah, A. Q. (2009). Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: estimation of daily dietary intake. Food and Chemical Toxicology, 47, 242–248.

    Article  CAS  Google Scholar 

  • Baig, J. A., Kazi, T. G., Arain, M. B., Afridi, H. M., Kandhro, G. A., Sarfraz, R. A., et al. (2009). Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan. Journal of Hazardous Material, 166, 662–669.

    Article  CAS  Google Scholar 

  • Brahman, K. D., Kazi, T. G., Afridi, H. I., Naseem, S., Arain, S. S., & Ullah, N. (2013). Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: a multivariate study. Water Research, 47, 1005–1020.

    Article  CAS  Google Scholar 

  • Bundschuh, J., Farias, B., Martin, R., Storniolo, A., Bhattachary, P., Cortes, J., et al. (2004). Groundwater arsenic in the Chaco-Pampean Plain, Argentina: case study from Robles county, Santiago del Estero Province. Applied Geochemistry, 19, 231–243.

    Article  CAS  Google Scholar 

  • Carelli, V., Ross-Cisneros, F. N., & Sadun, A. A. (2002). Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochemistry International, 40(6), 573–584.

    Article  CAS  Google Scholar 

  • Caylak, E. (2012). Health risk assessment for arsenic in water sources of Cankiri Province of Turkey. CLEAN - Soil, Air, Water, 40(7), 728–734.

    Article  CAS  Google Scholar 

  • Chen, Y., Graziano, J. H., Parvez, F., Liu, M., Slavkovich, V., Kalra, T., et al. (2011). Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: Prospective cohort study. British Medical Journal, 342, d2431.

    Article  Google Scholar 

  • Cheng, Z., Geen, A. V., Seddique, A. A., & Ahmed, K. M. (2005). Limited Temporal variability of arsenic concentrations in 20 wells monitored for 3 years in Araihazar, Bangladesh. Environmental Science and Technology, 39, 4759–4766.

    Article  CAS  Google Scholar 

  • Chowdary, V. M., Rao, N. H., & Sarma, P. B. S. (2005). Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects. Agricultural Water Management, 75, 194–225.

    Article  Google Scholar 

  • Concha, G., Nermell, B., & Vahter, M. (2006). Spatial and temporal variations in arsenic exposure via drinking-water in Northern Argentina. Journal of Health, Population and Nutrition, 24(3), 317–326.

    Google Scholar 

  • Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling—hydrous ferric oxide. New York: Wiley.

    Google Scholar 

  • Erickson, M. L., & Barnes, R. J. (2006). Arsenic concentration variability in public water system wells in Minnesota, USA. Applied Geochemistry, 21, 305–317.

    Article  CAS  Google Scholar 

  • Farooqi, A., Masuda, H., & Firdous, N. (2007a). Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environmental Pollution, 145, 839–849.

    Article  CAS  Google Scholar 

  • Farooqi, A., Masuda, H., Kusakabe, M., Naseem, M., & Firdous, N. (2007b). Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochemical Journal, 41(4), 213–234.

    Article  CAS  Google Scholar 

  • Farooqi, A., Masuda, H., Siddique, R., & Naseem, M. (2009). Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan. Archives of Environmental Contamination and Toxicology, 56, 693–706.

    Article  CAS  Google Scholar 

  • Fuller, C. C., & Davis, J. A. (1989). Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters. Nature, 340, 52–54.

    Article  CAS  Google Scholar 

  • Graziano C., Toxicity, arsenic. (Accessed December 2012). Available from: http://www.emedicine.com

  • Gupta, A., Chauhan, V. S., & Sankararamakrishnan, N. (2009). Preparation and evaluation of iron–chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Research, 43(15), 3862–3870.

    Article  CAS  Google Scholar 

  • Halim, M. A., Majumder, R. K., Nessa, S. A., Hiroshiro, Y., Uddin, M. J., Shimada, J., et al. (2009). Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. Journal of Hazardous Materials, 164, 1335–1345.

    Article  CAS  Google Scholar 

  • Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science 22, 298(5598), 1602–1606.

    Article  CAS  Google Scholar 

  • Hinkle, S. R., & Polette, D. J. (1999). Arsenic in ground water of the Willamette Basin, Oregon (pp. 98–4205). Washington, D.C: U. S. Geological Survey Water Resources Investigations.

    Google Scholar 

  • Kaltreider, R. C., Davis, A. M., Lariviere, J. P., & Hamilton, J. W. (2006). Arsenic alters the function of the glucocorticoid receptor as a transcription factor. Environmental Health Perspective, 109(3), 245–251.

    Article  Google Scholar 

  • Karim, M. M. D. (2000). Arsenic in groundwater and health problems in Bangladesh. Water Research, 34, 304–310.

    Article  CAS  Google Scholar 

  • Kavcar, P., Sofuoglu, A., & Sofuoglu, S. C. (2009). A health risk assessment for exposure to trace metals via drinking water ingestion pathway. International Journal of Hygiene and Environmental Health, 212, 216–227.

    Article  CAS  Google Scholar 

  • Khan, S., Shahnaz, M., Jehan, N., Rehman, S., Shah, M. T., & Din, I. (2012). Drinking water quality and human health risk in Charsadda district. Pakistan Journal of Cleaner Production, xxx, 1–9.

  • Liu, A. G., Ming, J. H., & Ankumah, R. O. (2005). Nitrate contamination in private wells in rural Alabama, United States. Science of Total Environment, 346, 112–120.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142, 1–53.

    Article  CAS  Google Scholar 

  • Mostofa, K. M. G., Liu, C. Q., Pan, X. L., Yoshioka, T., Vione, D., Minakata, D., et al. (2013). Photosynthesis in nature: a new look. In K. M. G. Mostofa, T. Yoshioka, A. Mottaleb, & D. Vione (Eds.), Photobiogeochemistry of organic matter: principles and practices in water environments (Springer, New York, Chapter, Vol. 7, pp. 561–686).

    Chapter  Google Scholar 

  • Muhammad, S., Shah, M. T., & Khan, S. (2010). Arsenic health risk assessment in drinking water and source apportionment using multivariate statistical techniques in Kohistan region, northern Pakistan. Food and Chemical Toxicology, 48, 2855–2864.

    Article  CAS  Google Scholar 

  • Nguyen, V. A., Bang, S., Viet, P. H., & Kim, K. W. (2009). Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam. Environment International, 35, 466–472.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Shrestha, B., Kyaw-Myint, T. O., & Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Applied Geochemistry, 20, 55–68.

    Article  CAS  Google Scholar 

  • Ning, R. Y. (2002). Asenic removal by reverse osmosis. Desalinisation, 143, 237–241.

    Article  CAS  Google Scholar 

  • Parvez, F., Wasserman, G. A., Factor-Litvak, P., Liu, X., Slavkovich, V., Siddique, A. B., et al. (2011). Arsenic exposure and motor function among children in Bangladesh. Environmental Health Perspective, 119, 1665–1670.

    Article  CAS  Google Scholar 

  • Rahman, A., Persson, L., Nermell, B., Arifeen, S. E., Ekstorm, E., Smith, A., et al. (2010). Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology, 21, 797–804.

    Article  Google Scholar 

  • Reghunath, R., Murthy, T. R. J., & Raghavan, B. R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka. India. Water Research, 36, 2437–2442.

    Article  CAS  Google Scholar 

  • Sadun, A. A. (2002). Metabolic optic neuropathies. Seminars in Ophthalmology, 17(1), 29–32.

    Article  Google Scholar 

  • Shah, M.T. (2000). Mineralogy, chemistry and genesis of the proterozoic base metals deposits at the northern margin of Indian plate, in the Besham area Himalaya, northern Pakistan. In: Hussian, S.S., Akbar, H.M. (Eds.), Economic Geology of Pakistan, 11–57.

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the World Health Organization, 78(9), 1093–1103.

    CAS  Google Scholar 

  • Steinmaus, C. M., Yuan, Y., & Smith, A. H. (2005). The temporal stability of arsenic concentrations in well water in western Nevada. Environmental Research, 99, 164–168.

    Article  CAS  Google Scholar 

  • Stumm, Werner, and Morgan, J.J. (1996). Aquatic chemistry New York, Wiley, 3rd Edition, 1022

  • UN WWAP (2009). United Nations World Water Assessment Programme. The World Water Development Report 3: Water in a Changing World. UNESCO, Paris, France. Retrieved 18 May, 2011 from http://www.unwater.org/wwd10/downloads/WWD2010_Facts_web.pdf

  • US Environmental Protection Agency (USEPA), (1998). Arsenic, inorganic. United States Environmental Protection Agency, Integrated Risk Information System (IRIS), (CASRN 7440-38-2). http://www.epa.gov/iris/subst/0278.htm

  • US Environmental Protection Agency (USEPA), (2005). Guidelines for carcinogen Risk assessment. Risk Assessment Forum, Washington, DC, EPA/630/P-03/001F

  • Wasserman, G. A., Liu, X., Parvez, F., Ahsan, H., Factor-Litvak, P., Van Geen, A., et al. (2004). Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environmental Health Perspective, 112, 1329–1333.

    Article  CAS  Google Scholar 

  • Waychunas, G. A., Rea, B. A., Fuller, C. C., & Davis, J. A. (1993). Surface chemistry of ferrihydrite–Part 1–EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta, 57, 2251–2269.

    Article  CAS  Google Scholar 

  • WHO (World Health Organisation), (1999). Arsenic in drinking water. Fact sheet no. 210, Geneva, WHO

  • Xie, X., Ellis, A., Wang, Y., Xie, Z., Duan, M., & Su, C. (2009). Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Science of The Total Environment, 407(12), 3823–3835.

    Article  CAS  Google Scholar 

  • Zhang, X., Wang, Q., Liu, Y., Wu, J., & Yu, M. (2011). Application of multivariate statistical techniques in the assessment of water quality in the Southwest New Territories and Kowloon, Hong Kong. Environmental Monitoring and Assessment, 173, 17–27.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Ms. Mehwish Ramzan for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawairia Sultana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sultana, J., Farooqi, A. & Ali, U. Arsenic concentration variability, health risk assessment, and source identification using multivariate analysis in selected villages of public water system, Lahore, Pakistan. Environ Monit Assess 186, 1241–1251 (2014). https://doi.org/10.1007/s10661-013-3453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3453-3

Keywords

Navigation