Skip to main content
Log in

Characterizing spatial structure of sediment E. coli populations to inform sampling design

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Escherichia coli can persist in streambed sediments and influence water quality monitoring programs through their resuspension into overlying waters. This study examined the spatial patterns in E. coli concentration and population structure within streambed morphological features during baseflow and following stormflow to inform sampling strategies for representative characterization of E. coli populations within a stream reach. E. coli concentrations in bed sediments were significantly different (p = 0.002) among monitoring sites during baseflow, and significant interactive effects (p = 0.002) occurred among monitoring sites and morphological features following stormflow. Least absolute shrinkage and selection operator (LASSO) regression revealed that water velocity and effective particle size (D 10) explained E. coli concentration during baseflow, whereas sediment organic carbon, water velocity and median particle diameter (D 50) were important explanatory variables following stormflow. Principle Coordinate Analysis illustrated the site-scale differences in sediment E. coli populations between disconnected stream segments. Also, E. coli populations were similar among depositional features within a reach, but differed in relation to high velocity features (e.g., riffles). Canonical correspondence analysis resolved that E. coli population structure was primarily explained by spatial (26.9–31.7 %) over environmental variables (9.2–13.1 %). Spatial autocorrelation existed among monitoring sites and morphological features for both sampling events, and gradients in mean particle diameter and water velocity influenced E. coli population structure for the baseflow and stormflow sampling events, respectively. Representative characterization of streambed E. coli requires sampling of depositional and high velocity environments to accommodate strain selectivity among these features owing to sediment and water velocity heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, K. L., Whitlock, J. E., & Harwood, V. J. (2005). Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Applied and Environmental Microbiology, 71(6), 3041–3048.

    Article  CAS  Google Scholar 

  • Blott, S. J., & Pye, K. (2001). GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26, 1237–1248.

    Article  Google Scholar 

  • Burton, G. A., Jr., Gunnison, D., & Lanza, G. R. (1987). Survival of pathogenic bacteria in various freshwater sediments. Applied and Environmental Microbiology, 53(4), 633–638.

    Google Scholar 

  • Charlton, R. (2008). Fundamentals of fluvial geomorphology. New York, NY: Routledge. 234 pp.

    Google Scholar 

  • Cho, K. H., Pachepsky, Y. A., Kim, J. H., Guber, A. K., Shelton, D. R., & Rowland, R. (2010). Release of Escherichia coli from the bottom sediment in a first-order creek: experiment and reach-specific modeling. Journal of Hydrology, 391(3–4), 322–332.

    Article  Google Scholar 

  • Cinotto, P. J. (2005). Occurrence of fecal-indicator bacteria and protocols for identification of fecal-contaminated sources in selected reaches of the West Branch Brandywine Creek, Chester County, Pennsylvania. U.S. Geological Survey Scientific Investigations Report 2005–5039. 91 p.

  • Clermont, O., Stephane, B., & Bingen, F. (2000). Rapid and simple determination of Escherichia coli phylogenetic group. Applied and Environmental Microbiology, 66(10), 4555–4558.

    Google Scholar 

  • Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters, 8, 1175–1182.

    Article  Google Scholar 

  • Craig, D. L., Fallowfield, H. J., & Cromar, N. J. (2004). Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. Journal of Applied Microbiology, 96, 922–930.

    Article  CAS  Google Scholar 

  • Davies, C. M., Long, J. A. H., Donald, M., & Ashbolt, N. J. (1995). Survival of fecal microorganisms in marine and freshwater sediments. Applied and Environmental Microbiology, 61(5), 1888–1896.

    CAS  Google Scholar 

  • Dorner, S. M., Anderson, W. B., Slawson, R. M., Kouwen, N., & Huck, P. M. (2006). Hydrologic modeling of pathogen fate and transport. Environmental Science and Technology, 40(15), 4746–4753.

    Google Scholar 

  • Droppo, I. G., Liss, S. N., Williams, D., Nelson, T., Jaskot, C., & Trapp, B. (2009). Dynamic existence of waterborne pathogens in river sediment compartments: implications for water quality regulatory affairs. Environmental Science and Technology, 43(6), 1737–1743.

    Article  CAS  Google Scholar 

  • Environment Canada, 2013. Canadian climate normals 1971–2000: Kentville CDA, Nova Scotia. http://climate.weatheroffice.gc.ca/climate_normals/index_e.html

  • Garzio-Hadzick, A., Shelton, D. R., Hill, R. L., Pachepsky, Y. A., Guber, A. K., & Rowland, R. (2010). Survival of manure-borne E. coli in streambed sediment: effects of temperature and sediment properties. Water Research, 44, 2753–2762.

    Article  CAS  Google Scholar 

  • Gordon, N. D., McMahon, T. A., Finlayson, B. L., Gippel, C. J., & Nathan, R. J. (2004). Stream hydrology: An introduction for ecologists, 2nd Edition. West Sussex, England: John Wiley & Sons.

  • Grant, S. B., Litton-Mueller, R. M. & Ahn, J. H. (2011). Measuring and modeling the flux of fecal bacteria across the sediment–water interface in a turbulent stream. Water Resources Research, 47(5). doi:10.1029/2010WR009460.

  • Griffith, D. A., & Peres-Neto, P. R. (2006). Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology, 87(10), 2603–2613.

    Article  Google Scholar 

  • Haller, L., Amedegnato, E., Pote, J., & Wildi, W. (2009). Influence of freshwater sediment characteristics on persistence of fecal indicator bacteria. Water, Air, and Soil Pollution, 203, 217–227.

    Article  CAS  Google Scholar 

  • Halliday, E., & Gast, R. J. (2011). Bacteria in beach sands: an emerging challenge in protecting coastal water quality and bather health. Environmental Science and Technology, 45, 370–379.

    Article  CAS  Google Scholar 

  • Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Paleontologica Electronica, 4(1), 9 pp.

  • Hirotani, H., & Yoshino, M. (2010). Microbial indicators in natural biofilms developed in the riverbed. Water Science and Technology, 62(5), 1149–1153.

    Article  CAS  Google Scholar 

  • Ishii, S., Ksoll, W. B., Hicks, R. E., & Sadowsky, M. J. (2006). Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. Applied and Environmental Microbiology, 72(1), 612–621.

    Article  CAS  Google Scholar 

  • Ishii, S., Hansen, D. L., Hicks, R. E., & Sadowsky, M. J. (2007). Beach sand and sediments are temporal sinks and sources of Escherichia coli in Lake Superior. Environmental Science and Technology, 41, 2203–2209.

    Article  CAS  Google Scholar 

  • Jamieson, R., Gordon, R., Tattrie, S., & Stratton, G. (2003). Sources and persistence of fecal coliform bacteria in a rural watershed. Water Quality Research Journal of Canada, 38, 33–47.

    CAS  Google Scholar 

  • Johnson, L. A. K., Brown, M. B., Carruthers, E. A., Ferguson, J. A., Dombek, P. E., & Sadowsky, M. J. (2004). Sample size, library composition and genotypic diversity among natural populations of Escherichia coli from different animals influence accuracy of determining sources of fecal pollution. Applied and Environmental Microbiology, 70(8), 4478–4485.

    Article  CAS  Google Scholar 

  • Kim, J.-W., Pachepsky, Y. A., Shelton, D. R., & Coppock, C. (2010). Effect of streambed bacteria release on E. coli concentrations: monitoring and modeling with the modified SWAT. Ecological Modelling, 221(12), 1592–1604.

    Article  Google Scholar 

  • Kinzelman, J., McLellan, S. L., Daniels, A. D., Cashin, S., Singh, A., Gradus, S., & Bagley, R. (2004). Non-point source pollution: determination of replication versus persistence of Escherichia coli in surface water and sediments with correlation of levels to readily measurable environmental parameters. Journal of Water and Health, 2(2), 103–114.

    CAS  Google Scholar 

  • Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280.

    Article  Google Scholar 

  • Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., et al. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7, 601–613.

    Article  Google Scholar 

  • Lu, L., Hume, M. E., Sternes, K. L., & Pillai, S. D. (2004). Genetic diversity of Escherichia coli isolates in irrigation water and associated sediments: implications for source tracking. Water Research, 38(18), 3899–3908.

    Article  CAS  Google Scholar 

  • Lu, Z., Lapen, D., Scott, A., Dang, A., & Topp, E. (2005). Identifying host sources of fecal pollution: diversity of Escherichia coli in confined dairy and swine production systems. Applied and Environmental Microbiology, 71(10), 5992–5998.

    Article  CAS  Google Scholar 

  • McKergow, L. A., & Davies-Colley, R. J. (2010). Stormflow dynamics and loads of Escherichia coli in a large mixed land use catchment. Hydrologic Processes, 24, 276–289.

    Google Scholar 

  • Oliver, D. M., Clegg, C. D., Heathwaite, A. L., & Haygarth, P. M. (2007). Preferential attachment of Escherichia coli to different particle size fractions of an agricultural grassland soil. Water, Air, and Soil Pollution, 185, 369–375.

    Article  CAS  Google Scholar 

  • Ouattara, N. K., Passerat, J., & Servais, P. (2011). Faecal contamination of water and sediment in the rivers of the Scheldt drainage network. Environmental Monitoring and Assessment, 183, 243–257.

    Google Scholar 

  • Pachepsky, Y. A., & Shelton, D. R. (2011). Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Critical Reviews in Environmental Science and Technology, 41(12), 1067–1110.

    Article  CAS  Google Scholar 

  • Pachepsky, Y. A., Yu, O., Karns, K. S., Shelton, D. R., Guber, A. K., & van Kessel, J. S. (2008). Strain-dependent variations in attachment of E. coli to soil particles of different sizes. International Agrophysics, 22, 61–66.

    CAS  Google Scholar 

  • Pandey, P. K., Soupir, M. L., & Rehmann, C. R. (2012). A model for predicting resuspension of Escherichia coli from streambed sediments. Water Research, 46(1), 115–126.

    Article  CAS  Google Scholar 

  • Peres-Neto, P. R., & Legendre, P. (2010). Estimating and controlling for spatial structure in the study of ecological communities. Global Ecology and Biogeography, 19, 174–184.

    Article  Google Scholar 

  • Peterson, E. E., Ver Hoef, J. M., Isaak, D. J., Falke, J. A., Fortin, M.-J., Jordan, C. E., McNyset, K., Monestiez, P., Ruesch, A. S., Sengupta, A., Som, N., Steel, E. A., Theobald, D. M., Torgersen, C. E., & Wenger, S. J. (2013). Modelling dendritic ecological networks in space: an integrated network perspective. Ecology Letters, 16, 707–719.

    Article  Google Scholar 

  • Powell, D. M. (1998). Patterns and processes of sediment sorting in gravel-bed rivers. Progress in Physical Geography, 22(1), 1–32.

    Google Scholar 

  • Rademaker, J. L.W., Louws, F. J., Versalovic, J., & de Bruijn, F. J. (2004). Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In G. A. Kowalchuk, F. J. de Bruijn, I. M. Head, A. D. Akkermans, & J. D. van Elsas (Eds.), Molecular microbial ecology manual (Vol. 1 and 2, pp. 611–643). Dordrecht, The Netherlands: Kluwer Academic Publishers.

  • Rehmann, C. R., & Soupir, M. L. (2009). Importance of interactions between the water column and the sediment for microbial concentrations in streams. Water Research, 43(18), 4579–4589.

    Article  CAS  Google Scholar 

  • Reynolds, K. A., Mena, K. D., & Gerba, C. P. (2008). Risk of waterborne illness via drinking water in the United States. Reviews of Environmental Contamination and Toxicology, 192, 117–158.

    Google Scholar 

  • Skjemstad, J. O., & Baldock, J. A. (2008). Total and organic carbon. In M. R. Carter & E. D. Gregorich (Eds.), Soil sampling and methods of analysis (2nd ed., pp. 225–237). Boca Raton, FL: Canadian Society of Soil Science, Taylor & Francis Group.

    Google Scholar 

  • Sinclair, A., Hebb, D., Jamieson, R., Gordon, R., Benedict, K., Fuller, K., et al. (2008). Growing season surface water loading of fecal indicator organisms within a rural watershed. Water Research, 43, 1199–1206.

    Article  Google Scholar 

  • Solomon, E. B., Yaron, S., & Matthews, K. R. (2002). Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Applied and Environmental Microbiology, 68(1), 397–400.

    Article  CAS  Google Scholar 

  • Tallon, P., Magajna, B., Lofranco, C., & Leung, K. T. (2005). Microbial indicators of faecal contamination in water: a current perspective. Water, Air, and Soil Pollution, 166, 139–166.

    Article  CAS  Google Scholar 

  • Topp, E., Welsh, M., Tien, Y.-C., Dang, A., Lazaro, G., Conn, K., & Zhu, H. (2003). Strain-dependent variability in growth and survival of Escherichia coli in agricultural soil. FEMS Microbiology Ecology, 44, 303–308.

    Google Scholar 

  • Walk, S. T., Alm, E. W., Calhoun, L. M., Mladonicky, J. M., & Whittman, T. S. (2007). Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environmental Microbiology, 9(9), 2274–2288.

    Article  Google Scholar 

  • Whitman, R. L., Nevers, M. B., & Byappanahalli, M. N. (2006). Examination of watershed-wide distribution of Escherichia coli along southern Lake Michigan: an integrated approach. Applied and Environmental Microbiology, 72(11), 7301–7310.

    Google Scholar 

  • Wu, J., Rees, P., Storrer, S., Alderisio, K., & Dorner, S. (2009). Fate and transport modeling of potential pathogens: the contribution from sediments. Journal of the American Water Resources Association, 45(1), 35–44.

    Article  CAS  Google Scholar 

  • Yakirevich, A., Pachepsky, Y. A., Guber, A. K., Gish, T. J., Shelton, D. R., & Cho, K. H. (2013). Modeling transport of Escherichia coli in a creek during and after high-flow events: three-year study and analysis. Water Research, 47(8), 2676–2688.

    Article  CAS  Google Scholar 

  • Yoder, J. S., Hlavsa, M. C., Craun, G. F., Hill, V., Roberts, V., Yu, P. A., et al. (2008). Surveillance for waterborne disease and outbreaks associated with recreational water use and other aquatic facility-associated health events – United States. MMWR Surveillance Summaries, 57(9), 1–29.

    Google Scholar 

Download references

Acknowledgements

Financial support for this project was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors would like to acknowledge the assistance of Tristan Goulden and Nick Dourado for assisting with field work and sample processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob C. Jamieson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 45 kb)

Table S2

(DOCX 36 kb)

Fig. S1

(DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piorkowski, G.S., Jamieson, R.C., Hansen, L.T. et al. Characterizing spatial structure of sediment E. coli populations to inform sampling design. Environ Monit Assess 186, 277–291 (2014). https://doi.org/10.1007/s10661-013-3373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3373-2

Keywords

Navigation