Skip to main content

Advertisement

Log in

Spatial variation of potentially toxic elements in different grain size fractions of marine sediments from Gulf of Mannar, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Marine sediments of the Gulf of Mannar (GoM), India are contaminated by potential toxic elements (PTEs) due to anthropogenic activities posing a risk to the existing fragile coral ecosystem and human health. The current study aimed to assess the distribution of PTEs (arsenic—As; cobalt—Co; copper—Cu, molybdenum—Mo; lead—Pb; and zinc—Zn) in marine sediments of different grain size fractions, viz., medium sand (710 μm), fine sand (250 μm), and clay (<63 μm) among the different coastal regions of Pamban, Palk Bay, and Rameswaram coasts of GoM, using grain size as one of the key factor controlling their concentrations. The concentrations of PTEs were measured in the different size fractions of sediment using inductively coupled plasma mass spectrophotometer. The order of accumulation of all PTEs in the three fractions was ranked as Zn > Cu > Pb > As > Co > Mo and in the three locations as Rameswaram > Palk Bay > Pamban. The concentration of PTEs in Palk Bay and Rameswaram coast was significantly different (P < 0.05), when compared to Pamban coast. Measured geoaccumulation index (I geo) and contamination factor (CF) indicated significant enrichment of Co and Pb from Rameswaram coast when compared to other two coasts. Although the concentration of Co was low but the measured I geo and CF values indicated significant enrichment of this PTE in Rameswaram coast. The increased input of PTEs in the coastal regions of GoM signifies the need to monitor the coast regularly using suitable monitoring tools such as sediments to prevent further damage to the marine ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amisah, S., Obirikorang, K., & Adjei Boateng, D. (2011). Bioaccumulation of heavy metals in the Volta clam, Galatea paradoxa (Born, 1778) in relation to their geoaccumulation in benthic sediments of the Volta Estuary, Ghana. Water Quality, Exposure and Health, 2(3), 147–156. doi:10.1007/s12403-010-0032-5.

    Article  CAS  Google Scholar 

  • Anu, G., Nair, S. M., Kumar, N. C., Jayalakshmi, K. V., & Pamalal, D. (2009). A baseline study of trace metals in a coral reef sedimentary environment, Lakshadweep Archipelago. Environmental Earth Science, 59(6), 1245–1266. doi.10.1007/s12665-009-0113-6.

    Google Scholar 

  • Aprile, F. M., & Bouvy, M. (2008). Distribution and enrichment of heavy metals in sediments at the Tapacura River basin, Northeastern Brazil. Brazilian Journal of Aquatic Science and Technology, 12(1), 1–8.

    CAS  Google Scholar 

  • Arsene, C., Bougatioti, A., & Mihalopoulos, N. (2009). Sources and variability of non-methane hydrocarbons in the Eastern Mediterranean. Global NEST Journal, 11(3), 333–340.

    Google Scholar 

  • Begum, Z., Balaram, V., Ahmad, S. M., Satyanarayanan, M., & Gnaneshwar Rao, T. (2007). Determination of trace and rare earth elements in marine sediment reference materials by ICP-MS: comparison of open and closed acid digestion methods. Atomic Spectroscopy, 28(2), 41–50.

    CAS  Google Scholar 

  • Cachada, A., Dias, A., Pato, P., Mieiro, C., Rocha-Santos, T., Pereira, M., Ferreira da Silva, E., & Duarte, A. (2013). Major inputs and mobility of potentially toxic elements contamination in urban areas. Environmental Monitoring and Assessment, 185(1), 279–294. doi:10.1007/s10661-012-2553-9.

    Article  CAS  Google Scholar 

  • Casado-Martínez, M. C., Buceta, J. L., Belzunce, M. J., & DelValls, T. A. (2006). Using sediment quality guidelines for dredged material management in commercial ports from Spain. Environment International, 32(3), 388–396. doi:10.1016/j.envint.2005.09.003.

    Article  Google Scholar 

  • Chapman, P. M., Wang, F., Janssen, C., Persoone, G., & Allen, H. E. (1998). Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Canadian Journal of Fisheries and Aquatic Sciences, 55(10), 2221–2243. doi:10.1139/f98-145.

    Article  CAS  Google Scholar 

  • Hart, B. T. (1982). Uptake of trace metals by sediments and suspended particulates: a review. Hydrobiologia, 91–92(1), 299–313. doi:10.1007/bf00940121.

    Google Scholar 

  • Herut, B., Hornung, H., Krom, M. D., Kress, N., & Cohen, Y. (1993). Trace metals in shallow sediments from the Mediterranean coastal region of Israel. Marine Pollution Bulletin, 26(12), 675–682. doi:10.1016/0025-326x(93)90550-4.

    Article  CAS  Google Scholar 

  • Ianni, C., Magi, E., Rivaro, P., & Ruggieri, N. (2000). Trace metals in Adriatic coastal sediments: distribution and speciation pattern. Toxicological and Environmental Chemistry, 78(1–2), 73–92. doi:10.1080/02772240009358961.

    Article  CAS  Google Scholar 

  • Jayaprakash, M., Nagarajan, R., Velmurugan, P. M., Sathiyamoorthy, J., Krishnamurthy, R. R., & Urban, B. (2012). Assessment of trace metal contamination in a historical freshwater canal (Buckingham Canal), Chennai, India. Environmental Monitoring and Assessment, 184(12), 7407–7424. doi:10.1007/s10661-011-2509-5.

    Article  CAS  Google Scholar 

  • Jonathan, M. P., & Ram Mohan, V. (2003). Heavy metals in sediments of the inner shelf off the Gulf of Mannar, South East Coast of India. Marine Pollution Bulletin, 46(2), 263–268. doi:10.1016/s0025-326x(02)00484-8.

    Article  CAS  Google Scholar 

  • Jothinayagi, N., & Anbazhagan, C. (2009). Heavy metal monitoring of Rameswaram coast by some Sargassum species. American-Eurasian Journal of Scientific Research, 4(2), 73–80.

    CAS  Google Scholar 

  • Kalnejais, L. H., Martin, W. R., Signell, R. P., & Bothner, M. H. (2007). Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments. Environmental Science & Technology, 41(7), 2282–2288. doi:10.1021/es061770z.

    Article  CAS  Google Scholar 

  • Krishna, A., & Govil, P. (2008). Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environmental Geology, 54(7), 1465–1472. doi:10.1007/s00254-007-0927-z.

    Article  CAS  Google Scholar 

  • Krishna Kumar, S., Chandrasekar, N., & Seralathan, P. (2010). Trace elements contamination in coral reef skeleton, Gulf of Mannar, India. Bulletin of Environmental Contamination and Toxicology, 84(1), 141–146. doi:10.1007/s00128-009-9905-3.

    Article  CAS  Google Scholar 

  • Kucuksezgin, F., Uluturhan, E., & Batki, H. (2008). Distribution of heavy metals in water, particulate matter and sediments of Gediz River (Eastern Aegean). Environmental Monitoring and Assessment, 141(1), 213–225. doi:10.1007/s10661-007-9889-6.

    Article  CAS  Google Scholar 

  • Larsen, B., & Jensen, A. (1989). Evaluation of the sensitivity of sediment stations in pollution monitoring. Marine Pollution Bulletin, 20(11), 556–560. doi:10.1016/0025-326x(89)90356-1.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in the sediments of the Rhine River. Geology Journal, 2, 108–118.

    Google Scholar 

  • Mylopoulos, Y., Kolokythas, E., Vagiona, D., Kampragou, E., & Eleftheriadou, E. (2008). Hydrodiplomacy in practice: transboundary water management in northern Greece. Global NEST Journal, 10(3), 287–294.

    Google Scholar 

  • Negri, A., Burns, K., Boyle, S., Brinkman, D., & Webster, N. (2006). Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental Pollution, 143(3), 456–467. doi:10.1016/j.envpol.2005.12.005.

    Article  CAS  Google Scholar 

  • Puig, P., Palanques, A., Sanchez-Cabeza, J. A., & Masqué, P. (1999). Heavy metals in particulate matter and sediments in the southern Barcelona sedimentation system (North-western Mediterranean). Marine Chemistry, 63(3–4), 311–329. doi:10.1016/s0304-4203(98)00069-3.

    Article  CAS  Google Scholar 

  • Ramesh, R., Purvaja, R., Ramesh, S., & James, R. A. (2002). Historical pollution trends in coastal environments of India. Environmental Monitoring and Assessment, 79(2), 151–176. doi:10.1023/a:1020250717093.

    Article  CAS  Google Scholar 

  • Ranjan, R., Ramanathan, A., Singh, G., & Chidambaram, S. (2008). Assessment of metal enrichments in tsunamigenic sediments of Pichavaram mangroves, southeast coast of India. Environmental Monitoring and Assessment, 147(1), 389–411. doi:10.1007/s10661-007-0128-y.

    Article  CAS  Google Scholar 

  • Rao, J. V., Kavitha, P., Reddy, N. C., & Rao, T. G. (2006). Petrosia testudinaria as a biomarker for metal contamination at Gulf of Mannar, southeast coast of India. Chemosphere, 65(4), 634–638. doi:10.1016/j.chemosphere.2006.01.072.

    Article  CAS  Google Scholar 

  • Rao, J. V., Kavitha, P., Srikanth, K., Usman, P. K., & Rao, T. G. (2007). Environmental contamination using accumulation of metals in marine sponge, Sigmadocia fibulata inhabiting the coastal waters of Gulf of Mannar, India. Toxicological and Environmental Chemistry, 89(3), 487–498. doi:10.1080/02772240601150588.

    Article  CAS  Google Scholar 

  • Rao, J. V., Srikanth, K., Pallela, R., & Gnaneshwar Rao, T. (2009). The use of marine sponge Haliclona tenuiramosa as bioindicator to monitor heavy metal pollution in the coasts of Gulf of Mannar, India. Environmental Monitoring and Assessment, 156(1), 451–459. doi:10.1007/s10661-008-0497-x.

    Google Scholar 

  • Renzi, M. (2009). Assessment of environmental pollutants in ten southern Italy harbor sediments. Toxicology and Industrial Health, 25(4–5), 351–363.

    Article  CAS  Google Scholar 

  • Sahayam, J. D., Chandrasekar, N., Kumar, S. K., & Rajamanickam, G. V. (2010). Distribution of arsenic and mercury in subtropical coastal beachrock, Gulf of Mannar, India. Journal of Earth System Science, 119(1), 129–135.

    Article  CAS  Google Scholar 

  • Solai, A., Gandhi, S. M., & Sriram, E. (2010). Implications of physical parameters and trace elements in surface water off Pondicherry, Bay of Bengal, South East Coast of India. International Journal of Environmental Science, 1(4), 1–14.

    Google Scholar 

  • Sulochanan, B., Krishnakumar, P. K., Prema, D., Kaladharan, P., Valsala, K. K., Bhat, G. S., & Muniyandi, K. (2007). Trace metal contamination of the marine environment in Palk Bay and Gulf of Mannar. Journal of Marine Biological Association of India, 49(1), 12–18.

    Google Scholar 

  • Sundararajan, M., & Srinivasalu, S. (2010). Geochemistry of core sediments from Gulf of Mannar, India. International Journal of Environmental Research, 4(4), 861–876.

    CAS  Google Scholar 

  • Szava-Kovats, R. C. (2008). Grain-size normalization as a tool to assess contamination in marine sediments: is the 63 μm fraction fine enough? Marine Pollution Bulletin, 56(4), 629–632. doi:10.1016/j.marpolbul.2008.01.017.

    Article  CAS  Google Scholar 

  • Thompson, B., Adelsbach, T., Brown, C., Hunt, J., Kuwabara, J., Neale, J., Ohlendorf, H., Schwarzbach, S., Spies, R., & Taberski, K. (2007). Biological effects of anthropogenic contaminants in the San Francisco Estuary. Environmental Research, 105(1), 156–174. doi:10.1016/j.envres.2006.10.005.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. The Geological Society of America, 72, 175–192.

    Article  CAS  Google Scholar 

  • Zhang, C., Wang, L., Li, G., Dong, S., Yang, J., & Wang, X. (2002). Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China. Applied Geochemistry, 17(1), 59–68. doi:10.1016/s0883-2927(01)00079-8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Biotechnology, Government of India for financial assistance and to the Director of IICT for providing the facilities and his constant encouragement. The authors KS and RP are thankful to CSIR, for providing the Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkateswara Rao Janapala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koigoora, S., Ahmad, I., Pallela, R. et al. Spatial variation of potentially toxic elements in different grain size fractions of marine sediments from Gulf of Mannar, India. Environ Monit Assess 185, 7581–7589 (2013). https://doi.org/10.1007/s10661-013-3120-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3120-8

Keywords

Navigation