Skip to main content
Log in

Controlling factors of phytoplankton seasonal succession in oligotrophic Mali Ston Bay (south-eastern Adriatic)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Fine spatial and temporal phytoplankton variability in Mali Ston Bay has been observed for the first time based on physicochemical properties and small herbivorous zooplankton. Extensive year-through research was conducted during 2002 at Usko station which is traditionally an area of intensive shellfish farming. The Neretva River inflow, submarine springs (“vruljas”) and precipitation are additional sources of nutrients in the bay. Temperature and salinity, combined with total inorganic nitrogen (TIN) were observed to be the most important environmental factors driving the succession of phytoplankton communities. Orthophosphate was a potential limiting factor for phytoplankton development. The nanophytoplankton abundances, as well as the microphytoplankton diatoms are controlled by herbivorous zooplankton grazing (‘top-down’ control) more than other groups of microphytoplankton. Nanophytoplankton dominated phytoplankton abundance and its most intensive development was recorded in winter and spring, while increase in microphytoplankton abundance occurred in spring and autumn. Diatoms dominated microphytoplankton abundance mostly in winter and autumn, while dinoflagellates dominated in spring and summer. Considering the number of taxa and abundance, dinoflagellates were the dominant microphytoplankton group during the year and were the main component of the spring blooms. At that time, in conditions of elevated temperature (>16 °C), decreased salinity (34–36) and increased concentrations of TIN, blooms of harmful dinoflagellate Prorocentrum minimum were recorded for the first time in the bay. The results showed a significant difference in environmental conditions, as well as in the annual phytoplankton succession and community structure, as compared with studies carried out more than 20 years ago in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baek, H. S., Shimode, S., Shin, K., Myung-Soo Han, M.-S., & Kikuchi, T. (2009). Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: the role of vertical migration and cell division. Harmful Algae, 8, 843–856.

    Article  Google Scholar 

  • Baker, S. M., Levinton, J. S., Kurdziel, J. P., & Shumway, S. E. (1998). Selective feeding and biodeposition by zebra mussels and their relation to changes in phytoplankton composition and seston loads. Journal of Shellfish Research, 17, 1207–1213.

    Google Scholar 

  • Balenović, R. (1981). Hidrografske prilike u Malostonskom zaljevu i Malom moru. In J. Roglić & M. Meštrov (Eds.), Zbornik radova savjetovanja Malostonski zaljev — prirodna podloga i društveno valoriziranje (pp. 66–76). Dubrovnik: JAZU.

    Google Scholar 

  • Batistić, M., Jasprica, N., Carić, M., Čalić, M., Kovačević, V., Garić, R., et al. (2011). Biological evidence of a winter convection event in the South Adriatic: a phytoplankton maximum in the aphotic zone. Continental Shelf Research. doi:10.1016/j.csr.2011.01.004.

  • Baytut, Ö., Gönülol, A., & Koray, T. (2005). New records for marine phytoplankton of Turkish seas from southern Black Sea coasts. E.U. Journal of Fisheries & Aquatic Sciences, 22(1–2), 229–231.

    Google Scholar 

  • Bérard-Therriault, L., Poulin, M., & Bossé, L. (1999). Guide d’identification du phytoplankton marin de l’estuaire et du golfe du Saint-Laurent. Ottawa: Les presses scientifiques du CNRC.

    Google Scholar 

  • Berman, T., Azov, Y., Schneller, A., Walline, P., & Townsend, D. W. (1986). Extent, transparency, and phytoplankton distribution of the neritic waters overlying the Israeli coastal shelf. Oceanologica Acta, 9(4), 439–447.

    CAS  Google Scholar 

  • Bernardi Aubry, F., Berton, A., Bastianini, M., Socal, G., & Acri, F. (2004). Phytoplankton succession in a coastal area of the NW Adriatic, over a 10-year sampling period (1990–1999). Continental Shelf Research, 24(1), 97–115.

    Article  Google Scholar 

  • Béthoux, J. P., Morin, P., & Ruiz-Pino, D. P. (2002). Temporal trends in nutrient ratios: chemical evidence of Mediterranean ecosystem changes driven by human activity. Deep Sea Research Part II: Topical Studies in Oceanography, 49, 2007–2016.

    Article  Google Scholar 

  • Bode, A., & Dorch, Q. (1996). Uptake and regeneration of inorganic nitrogen in coastal waters influenced by the Mississippi River: spatial and seasonal variations. Journal of Plankton Research, 18, 2251–2268.

    Article  CAS  Google Scholar 

  • Boldrin, A., Miserocchi, S., Rabitti, S., Turchetto, M. M., Balboni, V., & Socal, G. (2002). Particulate matter in the Southern Adriatic and Ionian Sea: characterisation and downward fluxes. Journal of Marine System, 33–34, 389–410.

    Article  Google Scholar 

  • Bratoš, A., Glamuzina, B., & Benović, A. (2004). Croatian shellfisheries aquaculture—advantages and disadvantages. Naše more, 51(1–2), 59–62.

    Google Scholar 

  • Burić, Z., Kiss, K. T., Ács, É., Viličić, D., Caput Mihalić, K., & Carić, M. (2007). The occurrence and ecology of the centric diatom Cyclotella choctawhatcheeana Prasad in a Croatian estuary. Nova Hedwigia, 84(1–2), 135–153.

    Google Scholar 

  • Carić, M., Jasprica, N., Čalić, M., & Batistić, M. (2011). Phytoplankton response to high salinity and nutrient limitation in the eastern Adriatic marine lakes. Scientia Marina, 75(3), 493–505.

    Article  Google Scholar 

  • Carić, M., Jasprica, N., Kršinić, F., Vilibić, I., & Batistić, M. (2012). Hydrography, nutrients, and plankton along the longitudinal section of the Ombla Estuary (south-eastern Adriatic). Journal of the Marine Biological Association of the United Kingdom. doi:10.1017/S002531541100213X.

  • Carlsson, P., & Granéli, E. (1999). Effects of N: P: Si ratios and zooplankton grazing on phytoplankton communities in the northern Adriatic Sea: II. Phytoplankton species composition. Aquatic Microbial Ecology, 18, 55–65.

    Article  Google Scholar 

  • Caroppo, C., Stabili, L., & Cavallo, R. A. (2003). Diatoms and bacteria diversity: study of their relationships in the Southern Adriatic Sea. Mediterranean Marine Science, 4(2), 73–82.

    Article  Google Scholar 

  • Cassie, R. M. (1962). Frequency distribution models in ecology of plankton and other organisms. Journal of Animal Ecology, 31, 65–92.

    Article  Google Scholar 

  • Cerino, F., Bernardi-Aubry, F., Coppola, J., La Ferla, B., Maimone, G., Socal, G., et al. (2011). Spatial and temporal variability of pico-, nano- and microphytoplankton in the offshore southern Adriatic Sea (Mediterranean Sea). Continental Shelf Research. doi:10.1016/j.csr.2011.06.006.

  • Cushman-Rosin, B., Gačić, M., Poulain, P. M., & Artegiani, A. (2001). Physical oceanography at the Adriatic sea—past, present and future. Dordecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Davenport, J., Ezgeta-Balić, D., Peharda, M., Skejić, S., Ninčević-Gladan, Ž., & Matijević, S. (2011). Size-differential feeding in Pinna nobilis L. (Mollusca: Bivalvia): exploitation of detritus, phytoplankton and zooplankton. Estuarine, Coastal and Shelf Science, 92(2), 246–254.

    Article  Google Scholar 

  • Denis, M., Thyssen, M., Martin, V., Manca, B., & Vidussi, F. (2010). Ultraphytoplankton basin-scale distribution in the eastern Mediterranean Sea in winter: link to hydrodynamism and nutrients. Biogeosciences, 7, 2227–2244.

    Article  Google Scholar 

  • Domingues, R. B., Barbosa, A., & Galvão, H. (2005). Nutrients, light and phytoplankton succession in a temperate estuary (the Guadiana, south-western Iberia). Estuarine, Coastal and Shelf Science, 64, 249–260.

    Article  Google Scholar 

  • Domingues, R. B., Anselmo, T. P., Barbosa, A., Sommer, U., & Galvão, H. (2011). Nutrient limitation of phytoplankton growth in the freshwater tidal zone of a turbid, Mediterranean estuary. Estuarine, Coastal and Shelf Science, 91(2), 282–297.

    Article  CAS  Google Scholar 

  • Edwards, M., M. Heath & McQuatters-Gollop, A. (2010). Plankton. Resource document. MCCIP Annual Report Card 2010–11, MCCIP Science Review, (pp. 10). www.mccip.org.uk/arc. Accessed 10 June 2012.

  • EU Water Framework Directive. (2000). Directive 2000/60/EC of the European Parliament and of the Council. Official Journal of the European Communities, L327, 48.

    Google Scholar 

  • Finlay, K., & Roff, C. J. (2004). Radiotracer determination of the diet of calanoid copepod nauplii and copepodites in a temperate estuary. ICES Journal of Marine Science, 61, 552–562.

    Article  Google Scholar 

  • Gačić, M., Poulain, P. M., Zore-Armanda, M., & Barale, V. (2001). Physical oceanography of the Adriatic Sea. In B. Cuchman-Roisin, M. Gačić, P.-M. Poulain, & A. Artegiani (Eds.), Physical oceanography at the Adriatic Sea — past, present and future (pp. 1–42). Dordecht: Kluwer Academic Publishers.

    Google Scholar 

  • Gilabert, J. (2001). Seasonal plankton dynamics in a Mediterranean hypersaline coastal lagoon: the Mar Menor. Journal of Plankton Research, 23, 207–218.

    Article  Google Scholar 

  • Giovanardi, F., & Vollenweider, R. A. (2004). Trophic conditions of marine coastal waters: experience in applying the Trophic Index TRIX to two areas of the Adriatic and Tyrrhenian seas. Journal of Limnology, 63, 199–218.

    Article  Google Scholar 

  • Granéli, E., Carlsson, P., Turner, J. T., Tester, P. A., Béchemin, C., Dawson, R., et al. (1999). Effects of N:P:Si ratios and zooplankton grazing on phytoplankton communities in the northern Adriatic Sea: I. Nutrients, phytoplankton biomass, and polysaccharide production. Aquatic Microbial Ecology, 18, 37–54.

    Article  Google Scholar 

  • Grasshoff, K., Ehrhardt, M., & Kremling, K. (1983). Methods of seawater analysis. Weinheim: Verlag Chemie GmbH.

    Google Scholar 

  • Grzebyk, D., & Berland, B. (1996). Influences of temperature, salinity and irradiance on growth of Prorocentrum minimum (Dinophyceae) from the Mediterranean Sea. Journal of Plankton Reasearch, 18, 1837–1849.

    Article  Google Scholar 

  • Guinder, V., Popovich, C. A., Molinero, J. C., & Perillo, G. M. E. (2010). Long-term changes in phytoplankton phenology and community structure in the Bahía Blanca Estuary, Argentina. Marine Biology, 157(12), 2703–2716.

    Article  Google Scholar 

  • Hasle, G. R., & Syvertsen, E. E. (1996). Marine diatoms. In C. R. Tomas (Ed.), Identifying marine diatoms and dinoflagellates (pp. 5–361). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Head, E. J. H., & Harris, L. R. (1994). Feeding selectivity by copepods grazing on natural mixtures of phytoplankton determined by HPLC analysis of pigments. Marine Ecology Progress Series, 110, 75–83.

    Article  CAS  Google Scholar 

  • Heil, C. A., Glibert, P. M., & Fan, C. (2005). Prorocentrum minimum (Pavillard) Schiller — a review of a harmful algal bloom species of growing worldwide importance. Harmful Algae, 4, 449–470.

    Article  CAS  Google Scholar 

  • Hoffmann, L. J., Peeken, I., & Lochte, K. (2008). Iron, silicate, and light co-limitation of three Southern Ocean diatom species. Polar Biology, 31, 1067–1080.

    Article  Google Scholar 

  • Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., & Strickland, J. D. H. (1965). Fluorometric determination of chlorophyll. Conseil International pour l’Exploration de la Mer: Journal du Conseil, 30, 3–15.

    Article  CAS  Google Scholar 

  • Hustedt, F. (1930). Die Kieselalgen Deutschlands Oesterreichs und der Schweitz. Rabenhorst’s Kryptogamenflora Deutschlands Oesterreichs und der Schweiz. Leipzig: Akademische Verlagsgesellschaft mbH.

    Google Scholar 

  • Ivančić, I., & Degobbis, D. (1984). An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Research, 18, 1143–1147.

    Article  Google Scholar 

  • Ivančić, I., Fuks, D., Radić, T., Lyons, D. M., Šilović, T., Kraus, R., et al. (2010). Phytoplankton and bacterial alkaline phosphatase activity in the northern Adriatic Sea. Marine Environmental Research, 69, 85–94.

    Article  Google Scholar 

  • Jahnke, R., Richards, M., Nelson, J., Robertson, C., Rao, A., & Jahnke, D. (2005). Organic matter remineralization and porewater exchange rates in permeable South Atlantic Bight continental shelf sediments. Continental Shelf Research, 25, 1433–1452.

    Article  Google Scholar 

  • Jasprica, N. (1989). Distribution of the phytoplankton population density and volume-biomass in the Mali Ston and Gruž Bays (The Southern Adriatic). Ekologija, 24, 83–96.

    Google Scholar 

  • Jasprica, N., Carić, M., & Bobanović-Ćolić, S. (1994). Relationships between phytoplankton and bacterioplankton biomass in the Mali Ston Bay (Southern Adriatic). Periodicum Biologorum, 96, 480–482.

    Google Scholar 

  • Jasprica, N., Carić, M., Bolotin, J., & Rudenjak-Lukenda, M. (1997). The Mediterranean mussel (Mytilus galloprovincialis Lmk) growth rate response to phytoplankton and microzooplankton densities in the Mali Ston Bay (Southern Adriatic). Periodicum Biologorum, 99, 255–264.

    Google Scholar 

  • Jasprica, N., Carić, M., Kršinić, F., Kapetanović, T., Batistić, M., & Njire, J. (2012). Planktonic diatoms and their environment in the lower Neretva River estuary (Eastern Adriatic Sea, NE Mediterranean). Nova Hedwigia, 141, 405–430.

    Google Scholar 

  • Karydis, M. (2009). Eutrophication assessment of coastal waters based on indicators: a literature review. Global NEST Journal, 11(4), 373–390.

    Google Scholar 

  • Kjerfve, B. (1994). Coastal lagoon processes. In B. Kjerfve (Ed.), Coastal lagoon processes. Elsevier Oceanography Series, 60, 1–8.

  • Krom, M. D., Emeis, K. C., & Van Cappellen, P. (2010). Why is the Eastern Mediterranean phosphorus limited? Progress in Oceanography, 85, 236–244.

    Article  Google Scholar 

  • Kršinić, F. (1980). Comparasion of methods used in micro-zooplankton research in neritic waters of the Eastern Adriatic. Nova Thalassia, 4, 91–106.

    Google Scholar 

  • Levitus, S. (1982). Climatological atlas of the world ocean. NOAA Professional Paper 13. US. Government Printing Office: Washington DC.

  • Lillebø, A. I., Neto, J. M., Martins, I., Verdelhos, T., Leston, S., Cardoso, P. G., et al. (2005). Management of a shallow temperate estuary to control eutrophication: the effect of hydrodynamics on the system’s nutrient loading. Estuarine, Coastal and Shelf Science, 65, 697–707.

    Article  Google Scholar 

  • Lim, P. T., Leaw, C. P., Kobiyama, A., & Ogata, T. (2010). Growth and toxin production of tropical Alexandrium minutum Halim (Dinophyceae) under various nitrogen to phosphorus ratios. Journal of Applied Phycology, 22, 203–210.

    Article  CAS  Google Scholar 

  • Lopes, C. B., Lillebø, A. I., Dias, J. M., Pereira, E., Vale, C., & Duarte, A. C. (2007). Nutrient dynamics and seasonal succession of phytoplankton assemblages in a Southern European Estuary: Ria de Aveiro, Portugal. Estuarine, Coastal and Shelf Science, 71, 480–490.

    Article  Google Scholar 

  • Maestrini, S. Y., Béchemin, C., Grzebyk, D., & Hummert, C. (2000). Phosphorus limitation might promote more toxin content in the marine invader dinoflagellate Alexandrium minutum. Plankton Biology and Ecology, 47(1), 7–11.

    Google Scholar 

  • Malinverno, E., Ziveri, P., & Corselli, C. (2003). Coccolithophorid distribution in the Ionian Sea and its relationship to eastern Mediterranean circulation during late fall to early winter 1997. Journal of Geophysical Research, 108(8115), doi:10.1029/2002JC001346.

    Google Scholar 

  • Manca, B. B., Kovačević, V., Gačić, M., & Viezzoli, D. (2002). Dense water formation in the Southern Adriatic Sea and spreading into the Ionian Sea in the period 1997–1999. Journal of Marine Systems, 33–34, 133–154.

    Article  Google Scholar 

  • Mann, K. H. (1982). Ecology of coastal waters: a systems approach. Berkeley: University of California Press.

    Google Scholar 

  • Margalef, R. (1978). Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta, 134, 493–509.

    Google Scholar 

  • Margalef, R., Estrada, M., & Blasco, D. (1979). Functional morphology of organisms involved in red tides, as adapted to decaying turbulence. In D. L. Taylor & H. H. Seliger (Eds.), Toxic dinoflagellate blooms (pp. 89–94). Amsterdam: Elsevier.

    Google Scholar 

  • Mauchline, J. (1998). The biology of Calanoid copepods, Volume 33. San Diego: Academic Press.

    Google Scholar 

  • McCune, B., & Mefford, M. J. (2006). Multivariate analysis of ecological data, Version 5. Gleneden Beach: MjM Software Design.

    Google Scholar 

  • Milanović, P. (2006). Karst istočne Hercegovine i dubrovačkog priobalja. Beograd: Zuhra.

    Google Scholar 

  • Ninčević-Gladan, Ž., Marasović, I., Grbec, B., Skejić, S., Bužančić, M., Kušpilić, G., et al. (2009). Inter-decadal variability in phytoplankton community in the Middle Adriatic (Kaštela Bay) in relation to the to the North Atlantic Oscillation. Estuaries and Coasts, 33, 376–383.

    Article  Google Scholar 

  • Nixon, S. W., Fulweiler, R. W., Buckley, B. A., Granger, S. L., Nowicki, B. L., & Henry, K. M. (2009). The impact of changing climate on phenology, productivity, and benthic–pelagic coupling in Narragansett Bay. Estuarine, Coastal and Shelf Science, 82, 1–18.

    Article  CAS  Google Scholar 

  • O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A., & Bruno, J. F. (2009). Warming and resource availability shift food web structure and metabolism. PLoS Biology. doi:10.1371/journal.pbio.1000178.

  • Paerl, H., Yin, K., & Cloern, J. (2011). Global patterns of phytoplankton dynamics in coastal ecosystems. Eos, Transactions American Geophysical Union, 92(10), 85. doi:10.1029/2011EO100007.

    Article  Google Scholar 

  • Pernet, F., Malet, N., Pastoureaud, A., Vaquer, A., Quéré, C., & Dubroca, L. (2012). Marine diatoms sustain growth of bivalves in a Mediterranean lagoon. Journal of Sea Research, 68, 20–32.

    Article  CAS  Google Scholar 

  • Pettine, M., Casentini, B., Fazi, S., Giovanardi, F., & Pagnotta, R. (2007). A revisitation of TRIX for trophic status assessment in the light of the European Water Framework Directive: application to Italian coastal waters. Marine Pollution Bulletin, 54, 1413–1426.

    Article  CAS  Google Scholar 

  • Pilkaityté, R., & Rizinkovas, A. (2007). Seasonal changes in phytoplankton composition and nutrient limitation in shallow Baltic lagoon. Boreal Environment Research, 12, 551–559.

    Google Scholar 

  • Redfield, J. L., Ketchum, B. H., & Richards, F. A. (1963). The influence of organisms on the composition of seawater. In M. N. Hill (Ed.), The sea (pp. 26–77). New York: Willey.

    Google Scholar 

  • Richardson, L. L., & LeDrew, E. F. (2006). Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications. Dordrecht: Springer.

    Book  Google Scholar 

  • Rigual-Hernández, A. S., Bárcena, M. A., Sierro, F. J., Flores, J. A., Hernández-Almeida, I., Sanchez-Vidalb, A., et al. (2010). Seasonal to interannual variability and geographic distribution of the silicoflagellate fluxes in the Western Mediterranean. Marine Micropaleontology, 77, 46–57.

    Article  Google Scholar 

  • Rinaldi, A., & Giovanardi, F. (2011). Contribution of Richard A. Vollenweider toward understanding eutrophication of the coastal Adriatic Sea. Aquatic Ecosystem Health & Management, 14(2), 200–203.

    Article  Google Scholar 

  • Rocha, C., Galvão, H., & Barbosa, A. (2002). Role of transient silicon limitation in the development of cyanobacteria blooms in the Guadiana estuary, south-western Iberia. Marine Ecology Progress Series, 228, 35–45.

    Article  CAS  Google Scholar 

  • Sakka Hlaili, A., Grami, B., Hadj Mabrouk, H., Gosselin, M., & Hamel, D. (2007). Phytoplankton growth and microzooplankton grazing rates in a restricted Mediterranean lagoon (Bizerte Lagoon, Tunisia). Marine Biology, 151, 767–783.

    Article  Google Scholar 

  • Sara, G., Zenone, A., & Tomasello, A. (2009). Growth of Mytilus galloprovincialis (mollusca, bivalvia) close to fish farms: a case of integrated multi-trophic aquaculture within the Tyrrhenian Sea. Hydrobiologia, 636, 129–136.

    Article  Google Scholar 

  • Schiller, J. (1930). Coccolithineae. Rabenhorst’s Kryptogamen-Flora. Kryptogamen-Flora von Deutschland, Osterreich und der Schweiz. Leipzig: Akademische Verlagsgesellschaft MBH.

    Google Scholar 

  • Schiller, J. (1933). Dinoflagellatae (Peridineae). Rabenhorst’s Kryptogamen-Flora. Monographischer Behandlung Teil 1. Leipzig: Akademische Verlagsgesellschaft MBH.

    Google Scholar 

  • Schiller, J. (1937). Dinoflagellatae (Peridineae). Rabenhorst’s Kryptogamen-Flora. Monographischer Behandlung Teil 2. Leipzig: Akademische Verlagsgesellschaft MBH.

    Google Scholar 

  • Šilović, T., Ljubešić, Z., Mihanović, H., Olujić, G., Terzić, S., Jakšić, Ž., et al. (2011). Picoplankton composition related to thermohaline circulation: the Albanian boundary zone (southern Adriatic) in late spring, Estuarine. Coastal and Shelf Science, 91(4), 519–525.

    Article  Google Scholar 

  • Šolić, M., Krstulović, N., Kušpilić, G., Ninčević Gladan, Ž., Bojanić, N., Šestanović, S., et al. (2010). Changes in microbial food web structure in response to changed environmental trophic status: a case study of the Vranjic Basin (Adriatic Sea). Marine Environmental Research, 70, 239–249.

    Article  Google Scholar 

  • StatSoft, Inc. (2004). STATISTICA for Windows. Tulsa: OK.

  • Steidinger, K., & Tangen, K. (1996). Dinoflagellates. In C. R. Tomas (Ed.), Identifying marine diatoms and dinoflagellates (pp. 387–570). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis. Bulletin of Fisheries Research Board of Canada, 167, 1–310.

    Google Scholar 

  • Tanaka, T., Thingstad, T. F., Gasol, J. M., Cardelus, C., Jezbera, J., Sala, M. M., et al. (2009). Determining the availability of phosphate and glucose in P-limited mesocosms of NW Mediterranean surface waters. Aquatic Microbial Ecology, 56, 81–91.

    Article  Google Scholar 

  • Thompson, P. A., Bonham, P. I., & Swadling, K. M. (2008). Phytoplankton blooms in the Huon Estuary, Tasmania: top–down or bottom–up control? Journal of Plankton Research, 30(7), 735–753.

    Article  CAS  Google Scholar 

  • Tomec, M. (2004). Sastav fitoplanktona na uzgajalištu riba i školjkaša u uvali Kaldonta (Otok Cres). Ribarstvo, 62(4), 127–142.

    Google Scholar 

  • Totti, C., Civitarese, G., Acri, F., Barletta, D., Candelari, G., Paschini, E., et al. (2000). Seasonal variability of phytoplankton populations in the middle Adriatic sub-basin. Journal of Plankton Research, 22, 1735–1756.

    Article  Google Scholar 

  • UNESCO. (1986). Progress on oceanographic tables and standards 1983–1986: work and recommendations of the UNESCO/SCOR/ICES/IAPSO Joint Panel. UNESCO Technical Papers in Marine Science, 50, 1–59.

    Google Scholar 

  • Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Metodik. Mitteilungen Internationale Vereiningung fuer Theoretische und Angewandte Limnologie, 9, 1–38.

    Google Scholar 

  • Van Mooy, B. A. S., Fredricks, H. F., Pedler, B. E., Dyhrman, S. T., Karl, D. M., et al. (2009). Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature, 458, 69–72.

    Article  Google Scholar 

  • Viličić, D. (1989). Phytoplankton population density and volume as indicators of eutrophication in the eastern part of the Adriatic Sea. Hydrobiologia, 174, 117–132.

    Article  Google Scholar 

  • Viličić, D. (2002). Fitoplankton Jadranskog mora: Biologija i taksonomija. Zagreb: Školska knjiga.

    Google Scholar 

  • Viličić, D., Mušin, D., & Jasprica, N. (1994). Interrelations between hydrographic conditions, nanoplankton and bivalve larvae in the Mali Ston bay (the southern Adriatic). Acta Adriatica, 34, 55–64.

    Google Scholar 

  • Viličić, D., Kršinić, F., Carić, M., Jasprica, N., Bobanović-Ćolić, S., & Mikuš, J. (1995). Plankton and hydrography in an moderately eutrophic eastern Adriatic bay (Gruž Bay). Hydrobiologia, 304, 9–22.

    Article  Google Scholar 

  • Viličić, D., Jasprica, N., Carić, M., & Burić, Z. (1998). Taxonomic composition and seasonal distribution of microphytoplankton in Mali Ston Bay (eastern Adriatic). Acta Botanica Croatica, 57, 29–48.

    Google Scholar 

  • Viličić, D., Terzić, S., Ahel, M., Burić, Z., Jasprica, N., Carić, M., et al. (2008). Phytoplankton abundance and pigment biomarkers in the oligotrophic, eastern Adriatic estuary. Environmental Monitoring and Assessment, 135, 1–18.

    Google Scholar 

  • Viličić, D., Kuzmić, M., Bosak, S., Šilović, T., Hrustić, E., & Burić, Z. (2009). Distribution of phytoplankton along the thermohaline gradient in the north-eastern Adriatic channel; winter aspect. Oceanologia, 51(4), 495–513.

    Article  Google Scholar 

  • Viličić, D., Šilović, T., Kuzmić, M., Mihanović, H., Bosak, S., Tomažić, I., et al. (2010). Phytoplankton distribution across the southeast Adriatic continental and shelf slope to the west of Albania (spring aspect). Environmental Monitoring and Assessment. doi:10.1007/s10661-010-1659-1.

  • Vučak, Z., Gačić, M., & Dadić, V. (1981). Značajke strujnog polja Malostonskog zaljeva. In J. Roglić & M. Meštrov (Eds.), Zbornik radova savjetovanja Malostonski zaljev — prirodna podloga i društveno valoriziranje (pp. 41–51). Dubrovnik: JAZU.

    Google Scholar 

  • Weiss, R. F. (1970). The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Research, 17, 721–735.

    CAS  Google Scholar 

  • Winder, M., & Cloern, J. E. (2010). The annual cycles of phytoplankton biomass. Philosophical Transactions of the Royal Society B, 365, 3215–3226. doi:10.1098/rstb.2010.0125.

    Article  Google Scholar 

  • Yamada, S. S., & D’Elia, C. F. (1984). Silicic acid regeneration from estuarine sediment cores. Marine Ecology Progress Series, 18, 113–118.

    Article  CAS  Google Scholar 

  • Zingone, A., Dubroca, L., Iudicone, D., Margiotta, F., Corato, F., Ribera d’Alcalà, M., et al. (2010). Coastal phytoplankton do not rest in winter. Estuaries and Coasts, 33, 342–361.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Croatian Ministry of Science, Education and Sports through projects 0001001 and 275-0000000-3186. The authors are grateful to Dr. Zrinka Ljubešić and Dr. Ivona Cetinić for statistical instructions and useful comments that greatly improved the manuscript. We would like to thank Professor Steve Latham for improving the English. Principal author is grateful to colleague Ana Car who assisted in editing the manuscript. Thanks to technicians of Institute for Marine and Coastal research for sampling assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijeta Čalić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čalić, M., Carić, M., Kršinić, F. et al. Controlling factors of phytoplankton seasonal succession in oligotrophic Mali Ston Bay (south-eastern Adriatic). Environ Monit Assess 185, 7543–7563 (2013). https://doi.org/10.1007/s10661-013-3118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3118-2

Keywords

Navigation