Skip to main content
Log in

Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The structure and productivity of boreal forests are key components of the global carbon cycle and impact the resources and habitats available for species. With this research, we characterized the relationship between measurements of forest structure and satellite-derived estimates of gross primary production (GPP) over the Canadian boreal. We acquired stand level indicators of canopy cover, canopy height, and structural complexity from nearly 25,000 km of small-footprint discrete return Light Detection and Ranging (Lidar) data and compared these attributes to GPP estimates derived from the MODerate resolution Imaging Spectroradiometer (MODIS). While limited in our capacity to control for stand age, we removed recently disturbed and managed forests using information on fire history, roads, and anthropogenic change. We found that MODIS GPP was strongly linked to Lidar-derived canopy cover (r = 0.74, p < 0.01), however was only weakly related to Lidar-derived canopy height and structural complexity as these attributes are largely a function of stand age. A relationship was apparent between MODIS GPP and the maximum sampled heights derived from Lidar as growth rates and resource availability likely limit tree height in the prolonged absence of disturbance. The most structurally complex stands, as measured by the coefficient of variation of Lidar return heights, occurred where MODIS GPP was highest as productive boreal stands are expected to contain a wider range of tree heights and transition to uneven-aged structures faster than less productive stands. While MODIS GPP related near-linearly to Lidar-derived canopy cover, the weaker relationships to Lidar-derived canopy height and structural complexity highlight the importance of stand age in determining the structure of boreal forests. We conclude that an improved quantification of how both productivity and disturbance shape stand structure is needed to better understand the current state of boreal forests in Canada and how these forests are changing in response to changing climate and disturbance regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amiro, B. D., Cantin, A., Flannigan, M. D., & de Groot, W. J. (2009). Future emissions from Canadian boreal forest fires. Canadian Journal of Forest Research, 39, 383–395.

    Article  CAS  Google Scholar 

  • Amiro, B. D., Stocks, B. J., Alexander, M. E., Flannigan, M. D., & Wotton, B. M. (2001). Fire, climate change, carbon and fuel management in the Canadian boreal forest. International Journal of Wildland Fire, 10, 405–413.

    Article  Google Scholar 

  • Andersen, H. E. (2009). Using airborne light detection and ranging (LIDAR) to characterize forest stand condition on the Kenai Peninsula of Alaska. Western Journal of Applied Forestry, 24(2), 95–102.

    Google Scholar 

  • Andrew, M. E., Wulder, M. A., & Coops, N. C. (2012). Identification of de facto protected areas in boreal Canada. Biological Conservation, 146, 97–107.

    Article  Google Scholar 

  • Bergeron, Y. (2000). Species and stand dynamics in the mixed woods of Quebec’s southern boreal forest. Ecology, 81(6), 1500–1516.

    Article  Google Scholar 

  • Bergeron, Y., Flannigan, M., Gauthier, S., Leduc, A., & Lefort, P. (2004). Past, current and future fire frequency in the Canadian boreal forest: implications for sustainable forest management. Ambio, 33(6), 356–360.

    Google Scholar 

  • Boisvenue, C., & Running, S. W. (2006). Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Global Change Biology. doi:10.1111/j.1365-2486.2006.01134.x.

  • Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., & Gower, S. T. (2007). Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature, 450, 89–93.

    Article  CAS  Google Scholar 

  • Boucher, D., Gauthier, S., & De Grandpré, L. (2006). Structural changes in coniferous stands along a chronosequence and a productivity gradient in the northeastern boreal forest of Québec. Écoscience, 13(2), 172–180.

    Article  Google Scholar 

  • Bradford, J. B., & Kastendick, D. N. (2010). Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA. Canadian Journal of Forest Research, 40, 401–409.

    Article  CAS  Google Scholar 

  • Brandt, J. P. (2009). The extent of the North American boreal zone. Environmental Reviews, 17, 101–161.

    Article  Google Scholar 

  • Brassard, B. W., & Chen, H. Y. H. (2006). Stand structural dynamics of North American boreal forests. Critical Reviews in Plant Sciences, 25, 115–137.

    Article  Google Scholar 

  • Brassard, B. W., Chen, H. Y. H., Wang, J. R., & Duinker, P. N. (2008). Effects of time since stand-replacing fire and overstory composition on live-tree structural diversity in the boreal forest of central Canada. Canadian Journal of Forest Research, 38, 52–62.

    Article  Google Scholar 

  • Canadian Forest Service (2010). National Fire Database–Agency Fire Data. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta. http://cwfis.cfs.nrcan.gc.ca/en_CA/nfdb. Accessed 19 Sept 2011.

  • Carroll, A. L., Taylor, S. W., Régnière, J., & Safranyik, L. (2003). Effects of climate change on range expansion by the mountain pine beetle in British Columbia. In T. L. Shore, J. E. Brooks, & J. E. Stone (Eds.), Mountain Pine Beetle Symposium: Challenges and Solutions (pp. 223–232). Victoria: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre.

    Google Scholar 

  • Chen, H. Y. H., & Popadiouk, R. V. (2002). Dynamics of North American boreal mixedwoods. Environmental Reviews, 10, 137–166.

    Article  Google Scholar 

  • Cheng, R., & Lee, P. (2008). Urban sprawl and other major land use conversions in Ontario’s Greenbelt from 1993 to 2007. Global Forest Watch Canada. Edmonton, Alberta. http://www.globalforestwatch.ca/ON-greenbelt-2008/ONgreenbelt-change-GFWC2008_LR.pdf. Accessed 10 Dec 2011.

  • Cheng, R., & Lee, P. (2009). Recent (1990–2007) anthropogenic change within the forest landscapes of Nova Scotia. Global Forest Watch Canada. Edmonton, Alberta. http://www.globalforestwatch.ca/change_analysis/NS/GFWC_NS-change-2009_LR_WEB.pdf. Accessed 10 Dec 2011.

  • Churkina, G., & Running, S. W. (1998). Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems, 1, 206–215.

    Article  Google Scholar 

  • Clifford, P., Richardson, S., & Hemon, D. (1989). Assessing the significance of the correlation between two spatial processes. Biometrics, 45(1), 123–134.

    Article  CAS  Google Scholar 

  • Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., et al. (2007). Couplings between changes in the climate system and biogeochemistry. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, & M. T. H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 499–587). Cambridge: Cambridge University Press.

    Google Scholar 

  • Dubayah, R. O., & Drake, J. B. (2000). Lidar remote sensing for forestry. Journal of Forestry, 98, 44–46.

    Google Scholar 

  • Dutilleul, P. (1993). Modifying the t test for assessing the correlation between two spatial processes. Biometrics, 49(1), 305–314.

    Article  Google Scholar 

  • Ecological Stratification Working Group (1995). A national ecological framework for Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada. http://sis.agr.gc.ca/cansis/publications/ecostrat/cad_report.pdf. Accessed 1 Dec 2011.

  • Fahey, T. J., Woodbury, P. B., Battles, J. J., Goodale, C. L., Hamburg, S. P., Ollinger, S. V., & Woodall, C. W. (2010). Forest carbon storage: ecology, management, and policy. Frontiers in Ecology and the Environment, 8(5), 245–252.

    Article  Google Scholar 

  • Food and Agriculture Organization (2006). Global Forest Resources Assessment 2005: Progress towards sustainable forest management. Food and Agriculture Organization of the United Nations, Rome. ftp://ftp.fao.org/docrep/fao/008/A0400E/A0400E00.pdf. Accessed 6 Dec 2011.

  • Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R., & Stocks, B. J. (2005). Future area burned in Canada. Climatic Change, 72, 1–16.

    Article  CAS  Google Scholar 

  • Fortin, M.-J. (1999). Effects of sampling unit resolution on the estimation of spatial autocorrelation. Écoscience, 6(4), 636–641.

    Google Scholar 

  • Fortin, M.-J., & Payette, S. (2002). How to test the significance of the relation between spatially autocorrelated data at the landscape scale: a case study using fire and forest maps. Écoscience, 9(2), 213–218.

    Google Scholar 

  • Frelich, L. E., & Reich, P. B. (1995). Spatial patterns and succession in a Minnesota southern-boreal forest. Ecological Monographs, 65(3), 325–346.

    Article  Google Scholar 

  • Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & Huang, X. (2010). MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114, 168–182.

    Article  Google Scholar 

  • Gillis, M. D., Omule, A. Y., & Brierley, T. (2005). Monitoring Canada’s forests: the National Forest Inventory. The Forestry Chronicle, 81(2), 214–221.

    Google Scholar 

  • Heinsch, F. A., Zhao, M., Running, S. W., Kimball, J. S., Nemani, R. R., Davis, K. J., et al. (2006). Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Transactions on Geoscience and Remote Sensing, 44(7), 1908–1925.

    Article  Google Scholar 

  • Hopkinson, C., Wulder, M. A., Coops, N. C., Milne, T., Fox, A., & Bater, C. W. (2011). Airborne lidar sampling of the Canadian boreal forest: planning, execution, and initial processing, Proceedings of the SilviLaser 2011 Conference, Oct. 1620 (unpaginated). Hobart, Tasmania, Australia. http://www.iufro.org/download/file/8239/5065/40205-silvilaser2011_pdf. Accessed 15 Nov 2012.

  • Houghton, R. A., Hall, F., & Goetz, S. J. (2009). Importance of biomass in the global carbon cycle. Journal of Geophysical Research. doi:10.1029/2009JG000935.

  • Jennings, S. B., Brown, N. D., & Sheil, D. (1999). Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry, 72(1), 59–73.

    Article  Google Scholar 

  • Kane, V. R., Bakker, J. D., McGaughey, R. J., Lutz, J. A., Gersonde, R. F., & Franklin, J. F. (2010). Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data. Canadian Journal of Forest Research, 40, 774–787.

    Article  Google Scholar 

  • Kane, V. R., McGaughey, R. J., Bakker, J. D., Gersonde, R. F., Lutz, J. A., & Franklin, J. F. (2010). Comparisons between field- and LiDAR-based measures of stand structural complexity. Canadian Journal of Forest Research, 40, 761–773.

    Article  Google Scholar 

  • Kasischke, E. S., Christensen, N. L., & Stocks, B. J. (1995). Fire, global warming, and the carbon balance of boreal forests. Ecological Applications, 5(2), 437–451.

    Article  Google Scholar 

  • Kneeshaw, D., & Gauthier, S. (2003). Old growth in the boreal forest: a dynamic perspective at the stand and landscape level. Environmental Reviews, 11, S99–S114.

    Article  Google Scholar 

  • Kneeshaw, D. D., & Bergeron, Y. (1998). Canopy gap characteristics and tree replacement in the southeastern boreal forest. Ecology, 79(3), 783–794.

    Article  Google Scholar 

  • Kurz, W. A., & Apps, M. J. (1999). A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecological Applications, 9(2), 526–547.

    Article  Google Scholar 

  • Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., et al. (2008). Mountain pine beetle and forest carbon feedback to climate change. Nature, 452, 987–990.

    Article  CAS  Google Scholar 

  • Kurz, W. A., Dymond, C. C., White, T. M., Stinson, G., Shaw, C. H., Rampley, G. J., et al. (2009). CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecological Modelling, 220, 480–504.

    Article  Google Scholar 

  • Kurz, W. A., Stinson, G., & Rampley, G. J. (2008). Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philosophical Transactions of the Royal Society B-Biological Sciences, 363, 2259–2268.

    Google Scholar 

  • Larson, A. J., Lutz, J. A., Gersonde, R. F., Franklin, J. F., & Hietpasi, F. F. (2008). Potential site productivity influences the rate of forest structural development. Ecological Applications, 18(4), 899–910.

    Article  Google Scholar 

  • Lee, P., & Gysbers, J. D. (2008). Recent anthropogenic changes within the inland temperate rainforest of British Columbia: Interim report. Global Forest Watch Canada. Edmonton, Alberta. http://www.globalforestwatch.ca/change_analysis/BC/GFWC_change-BC-INTERIM_lowres.pdf. Accessed 10 Dec 2011.

  • Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar remote sensing for ecosystem studies. BioScience, 52(1), 19–30.

    Article  Google Scholar 

  • Lefsky, M. A., Hudak, A. T., Cohen, W. B., & Acker, S. A. (2005). Patterns of covariance between forest stand and canopy structure in the Pacific Northwest. Remote Sensing of Environment, 95, 517–531.

    Article  Google Scholar 

  • Lim, K., Treitz, P., Wulder, M. A., St-Onge, B., & Flood, M. (2003). LiDAR remote sensing of forest structure. Progress in Physical Geography, 27(1), 88–106.

    Article  Google Scholar 

  • Mac Nally, R., Parkinson, A., Horrocks, G., Conole, L., & Tzaros, C. (2001). Relationships between terrestrial vertebrate diversity, abundance and availability of coarse woody debris on south-eastern Australian floodplains. Biological Conservation, 99, 191–205.

    Article  Google Scholar 

  • Magnussen, S., & Boudewyn, P. (1998). Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Canadian Journal of Forest Research, 28, 1016–1031.

    Article  Google Scholar 

  • Masek, J. G., Cohen, W. B., Leckie, D., Wulder, M. A., Vargas, R., de Jong, B., et al. (2011). Recent rates of forest harvest and conversion in North America. Journal of Geophysical Research. doi:10.1029/2010JG001471.

  • McElhinny, C., Gibbons, P., Brack, C., & Bauhus, J. (2005). Forest and woodland stand structural complexity: its definition and measurement. Forest Ecology and Management, 218(1–3), 1–24.

    Article  Google Scholar 

  • McGaughey, R. J. (2012). FUSION/LDV: Software for LIDAR data analysis and visualization. Pacific Northwest Research Station, Forest Service, United States Department of Agriculture. http://forsys.cfr.washington.edu/fusion/FUSION_manual.pdf. Accessed 5 Sept 2011.

  • Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., et al. (2006). North American regional reanalysis. Bulletin of the American Meteorological Society, 87(3), 343–360.

    Article  Google Scholar 

  • Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9(3), 747–766.

    Article  Google Scholar 

  • Morsdorf, F., Kötz, B., Meier, E., Itten, K., & Allgöwer, B. (2006). Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sensing of Environment, 104, 50–61.

    Article  Google Scholar 

  • Myneni, R., Knyazikhin, Y., & Shabanov, N. (2011). Leaf area index and fraction of absorbed PAR products from Terra and Aqua MODIS sensors: analysis, validation, and refinement. In B. Ramachandran, C. O. Justice, & M. J. Abrams (Eds.), Land remote sensing and global environmental change (pp. 603–633). New York: Springer.

    Google Scholar 

  • Næsset, E. (2004). Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scandinavian Journal of Forest Research, 19(2), 164–179.

    Article  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, R. E., Kurz, W. A., et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993.

    Article  CAS  Google Scholar 

  • Paré, D., & Bergeron, Y. (1995). Above-ground biomass accumulation along a 230-year chronosequence in the southern portion of the Canadian boreal forest. Journal of Ecology, 83(6), 1001–1007.

    Article  Google Scholar 

  • Parry, M., Canziani, O., Palutikof, J., Adger, N., Aggarwal, P., Agrawala, S., Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., Hanson, C. E., et al. (2007). Technical summary. In Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report on the Intergovernmental Panel on Climate Change (pp. 23–78). Cambridge: Cambridge University Press.

    Google Scholar 

  • R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 15 Nov 2012.

  • Rosenberg, M. S., & Anderson, C. D. (2011). PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods in Ecology and Evolution, 2(3), 229–232.

    Article  Google Scholar 

  • Running, S. W., Nemani, R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54(6), 547–560.

    Article  Google Scholar 

  • Ryan, M. G., Binkley, D., & Fownes, J. H. (1997). Age-related decline in forest productivity: pattern and process. Advances in Ecological Research, 27, 213–262.

    Article  Google Scholar 

  • Safranyik, L., Carroll, A. L., Régnière, J., Langor, D. W., Riel, W. G., Shore, T. L., et al. (2010). Potential for range expansion of mountain pine beetle into the boreal forest of North America. The Canadian Entomologist, 142(5), 415–442.

    Article  Google Scholar 

  • Schulze, E. D., Beck, E., & Müller-Hohenstein, K. (2002). Plant ecology. Berlin: Springer.

    Google Scholar 

  • Solberg, S., Næsset, E., Hanssen, K. H., & Christiansen, E. (2006). Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning. Remote Sensing of Environment, 102(3–4), 364–376.

    Article  Google Scholar 

  • Spies, T. A. (1998). Forest structure: a key to the ecosystem. Northwest Science, 72(2), 34–39.

    Google Scholar 

  • Stanojevic, Z., Lee, P., & Gysbers, J. D. (2006a). Recent anthropogenic changes within the Boreal Plains ecozone of Saskatchewan and Manitoba: Interim report. Global Forest Watch Canada. Edmonton, Alberta. http://www.globalforestwatch.ca/change_analysis/change-analysis-SKMB-150dpi.pdf. Accessed 10 Dec 2011.

  • Stanojevic, Z., Lee, P., & Gysbers, J. D. (2006b). Recent anthropogenic changes within the Northern Boreal, Southern Taiga, and Hudson Plains Ecozones of Québec. Global Forest Watch Canada. Edmonton, Alberta. http://www.globalforestwatch.ca/change_analysis/change-analysis-QC-150dpi.pdf. Accessed 10 Dec 2011.

  • Statistics Canada (2010). Road Network File, Reference Guide. Statistics Canada, Ottawa, Ontario. http://www.statcan.gc.ca/pub/92-500-g/92-500-g2010001-eng.pdf. Accessed 22 Nov 2011.

  • Stinson, G., Kurz, W. A., Smyth, C. E., Neilson, E. T., Dymond, C. C., Metsaranta, J. M., et al. (2011). An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Global Change Biology, 17, 2227–2244.

    Article  Google Scholar 

  • Stocks, B. J., Mason, J. A., Todd, J. B., Bosch, E. M., Wotton, B. M., Amiro, B. D., et al. (2002). Large forest fires in Canada, 1959–1997. Journal of Geophysical Research. doi:10.1029/2001JD000484.

  • Tanabe, S., Toda, M. J., & Vinokurova, A. V. (2001). Tree shape, forest structure and diversity of drosophilid community: comparison between boreal and temperate birch forests. Ecological Research, 16, 369–385.

    Article  Google Scholar 

  • Taylor, A. R., & Chen, H. Y. H. (2011). Multiple successional pathways of boreal forest stands in central Canada. Ecography, 34(2), 208–219.

    Article  Google Scholar 

  • Thornley, J. H. M., & Cannell, M. G. R. (2004). Long-term effects of fire frequency on carbon storage and productivity of boreal forests: a modeling study. Tree Physiology, 24, 765–773.

    Article  CAS  Google Scholar 

  • USDA Forest Service (2003). Field Procedures for the Coastal Alaska Inventory. Pacific Northwest Station. http://www.fs.fed.us/pnw/fia/local-resources/pdf/field_manuals/ak/2003_coak_field_manual.pdf. Accessed 7 May 2012.

  • Vierling, L. A., Martinuzzi, S., Asner, G. P., Stoker, J., & Johnson, B. R. (2011). LiDAR: providing structure. Frontiers in Ecology and the Environment, 9, 261–262.

    Article  Google Scholar 

  • Walton, A. (2011). Provincial-Level Projection of the Current Mountain Pine Beetle Outbreak: Update of the infestation projection based on the 2010 Provincial Aerial Overview of Forest Health and the BCMPB model (year 8). BC Forest Service. http://www.for.gov.bc.ca/ftp/hre/external/!publish/web/bcmpb/year8/BCMPB.v8.BeetleProjection.Update.pdf. Accessed 23 Apr 2012.

  • Wehr, A., & Lohr, U. (1999). Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 68–82.

    Article  Google Scholar 

  • Wulder, M. A., Bater, C. W., Coops, N. C., Hilker, T., & White, J. C. (2008). The role of LiDAR in sustainable forest management. The Forestry Chronicle, 84(6), 807–826.

    Google Scholar 

  • Wulder, M. A., Campbell, C., White, J. C., Flannigan, M., & Campbell, I. D. (2007). National circumstances in the international circumboreal community. Forestry Chronicle, 83(4), 539–556.

    Google Scholar 

  • Wulder, M. A., White, J. C., Cranny, M. M., Hall, R. J., Luther, J. E., Beaudoin, A., et al. (2008). Monitoring Canada’s forests. Part 1: completion of the EOSD land cover project. Canadian Journal of Remote Sensing, 34(6), 549–562.

    Article  Google Scholar 

  • Wulder, M. A., White, J. C., Bater, C. W., Coops, N. C., Hopkinson, C., & Chen, G. (2012). Lidar plots—a new large-area data collection option: context, concepts, and case study. Canadian Journal of Remote Sensing, 38(5), 600–618.

    Google Scholar 

  • Zhao, M., Heinsch, F. A., Nemani, R. R., & Running, S. W. (2005). Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 95, 164–176.

    Article  Google Scholar 

  • Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940–943.

    Article  CAS  Google Scholar 

  • Zimble, D. A., Evans, D. L., Carlson, G. C., Parker, R. C., Grado, S. C., & Gerard, P. D. (2003). Characterizing vertical forest structure using small-footprint airborne lidar. Remote Sensing of Environment, 87, 171–182.

    Article  Google Scholar 

Download references

Acknowledgments

Aspects of this research were undertaken as part of the “EcoMonitor: Northern Ecosystem Climate Change Monitoring” project jointly funded by the Canadian Space Agency (CSA), Government Related Initiatives Program (GRIP), and the Canadian Forest Service (CFS) of Natural Resources Canada. Components of this research were also funded by a NSERC Discovery grant to Coops and a graduate scholarship to Bolton. Christopher Bater (previously of UBC and now with the Government of Alberta) is thanked for his analysis efforts and insights in the development of the forest structural attributes from the Lidar metrics. Chris Hopkinson (previously of Nova Scotia Community College and now with the University of Lethbridge) is thanked for his transect project partnership and his leadership of the national Canadian Consortium for LiDAR Environmental Applications Research (C-CLEAR) which was critical in obtaining the research data used in this study. Trevor Milne of Gaiamatics is thanked for assisting with the development of customized code for processing the long Lidar transect files.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas K. Bolton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolton, D.K., Coops, N.C. & Wulder, M.A. Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar. Environ Monit Assess 185, 6617–6634 (2013). https://doi.org/10.1007/s10661-012-3051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-3051-9

Keywords

Navigation