Skip to main content
Log in

Characterization of lead-resistant river isolate Enterococcus faecalis and assessment of its multiple metal and antibiotic resistance

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Contamination of surface waters has a direct impact on the public health of entire communities. Microorganisms inhabiting contaminated surface waters have developed mechanisms of coping with a variety of toxic metals and drugs. Investigations were carried out to isolate and identify lead-resistant bacteria from the river Kızılırmak along the city of Kırıkkale, Turkey. Of the 33 lead-resistant isolates, one isolate with a minimal inhibitory concentration of 1,200 mg L−1 was isolated and identified as Enterococcus faecalis by using biochemical tests and 16S rRNA sequencing. Lead-resistant E. faecalis isolate was found out to be resistant to other heavy metals like aluminum, lithium, barium, chromium, iron, silver, tin, nickel, zinc, and strontium and to drugs like amikacin, aztreonam, and gentamicin. E. faecalis harbored four plasmids with the molecular sizes of 1.58, 3.06, 22.76, and 28.95 kb. Plasmid profile analyses of cured derivatives revealed that the lead resistance ability of E. faecalis was still existing despite the elimination of all the plasmids. Moreover, the antibiotic resistance pattern of the cured derivatives did not demonstrate any change from the parental strain. Our findings indicated that the lead resistance genes of E. faecalis were located on the chromosomal DNA rather than the plasmid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barbosa, F., Tanus-Santos, J. E., Gerlach, R. F., & Parsons, P. J. (2005). A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environmental Health Perspectives, 113, 1669–1674.

    Article  CAS  Google Scholar 

  • Bauer, A. W., & Kirby, W. W. M. (1966). Antibiotic susceptibility tests by standard single disc method. American Journal of Clinical Pathology, 45, 493–496.

    CAS  Google Scholar 

  • Benson, D. A., & Karsch-Mizrachi, I. (2000). GenBank. Nucleic Acids Research, 28, 15–18.

    Article  CAS  Google Scholar 

  • Birnboim, H. C., & Doly, J. (1979). A rapid alkaline procedure for screening recombinant plasmid DNA. Nucleic Acids Research, 7, 1513–1523.

    Article  CAS  Google Scholar 

  • Boerlin, P., & Reid-Smith, R. J. (2008). Antimicrobial resistance: its emergence and transmission. Animal Health Research Reviews, 9, 115–126.

    Article  Google Scholar 

  • Chen, W. P., & Kuo, T. T. (1993). A simple and rapid method for the preparation of gram negative bacterial genomic DNA. Nucleic Acids Research, 21, 2260.

    Article  CAS  Google Scholar 

  • Coen, N., Mothersill, C., Kadhim, M., & Wright, E. G. (2001). Heavy metals of relevance to human health induce genomic instability. The Journal of Pathology, 195, 293–299.

    Article  CAS  Google Scholar 

  • Dillon, J. R. (1985). Recombinant DNA methodology. Canada: John Willey & Sons.

    Google Scholar 

  • Doublet, B., Boyd, D., Mulvey, M. R., & Cloeckaert, A. (2005). The Salmonella genomic island 1 is an integrative mobilizable element. Molecular Microbiology, 55, 1911–1924.

    Article  CAS  Google Scholar 

  • Endo, G., Narita, M., Huang, C. C., & Silver, S. (2002). Microbial heavy metal resistance transposons and plasmids: potential use for environmental biotechnology. Journal of Environmental Biotechnology, 2, 71–82.

    Google Scholar 

  • Enne, V. I., Livermore, D. M., Stephens, P., & Hall, L. (2001). Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet, 357, 1325–1328.

    Article  CAS  Google Scholar 

  • Gomez, J. A. L., Hendrickx, A. P. A., Willems, R. J., Top, J., Sava, I., Huebner, J., et al. (2011). Intra- and interspecies genomic transfer of the Enterococcus faecalis pathogenicity island. PLoS One. doi:10.1371/journal.pone.0016720.

  • Hochhut, B., Wilde, C., Balling, G., Middendorf, B., Dobrindt, U., Brzuszkiewicz, E., et al. (2006). Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536. Molecular Microbiology, 61, 584–595.

    Article  CAS  Google Scholar 

  • Jakobsen, L., Kurbasic, A., Skjot-Rasmussen, L., Ejrnaes, K., Porsbo, L. J., Pedersen, K., et al. (2010). Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathogens and Disease, 7, 537–547.

    Article  CAS  Google Scholar 

  • Kumar Reddy, D. H., & Lee, S. M. (2012). Water pollution and treatment technologies. Journal of Environmental & Analytical Toxicology, 2:e103, 2161-0525.

  • Kuntz, R. L., Hartel, P. G., Rodgers, K., & Segars, W. I. (2004). Presence of Enterococcus faecalis in broiler litter and wild bird feces for bacterial source tracking. Water Research, 38, 3351–3557.

    Article  Google Scholar 

  • Leclercq, R., Derlot, E., Duval, J., & Courvalin, P. (1988). Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. The New England Journal of Medicine, 319, 157–161.

    Article  CAS  Google Scholar 

  • Malekzadeh, F., Farazmand, A., Ghafourian, H., Shahamat, M., Levin, M., Grim, C., et al. (1996). Accumulation of heavy metals by a bacterium isolated from electroplating effluent. Proceeding of the Biotechnology Risk Assessment Symposium, 18, 388–398.

    Google Scholar 

  • Malik, A., & Jaiswal, R. (2000). Metal resistance in Pseudomonas strains isolated from soil treated with industrial wastewater. World Journal of Microbiology and Biotechnology, 16, 177–182.

    Article  CAS  Google Scholar 

  • McBride, S. M., Coburn, P. S., Baghdayan, A. S., Willems, R. J. L., Grande, M. J., Shankar, N., et al. (2009). Genetic variation and evolution of the pathogenicity island of Enterococcus faecalis. Journal of Bacteriology, 191, 3392–3402.

    Article  CAS  Google Scholar 

  • Mergeay, M., & Nies, D. (1985). Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. Journal of Bacteriology, 162, 328–334.

    CAS  Google Scholar 

  • Middendorf, B., Hochhut, B., Leipold, K., Dobrindt, U., Blum-Oehler, G., & Hacker, J. (2004). Instability of pathogenicity islands in uropathogenic Escherichia coli 536. Journal of Bacteriology, 186, 3086–3096.

    Article  CAS  Google Scholar 

  • Mondragón, V. A., Llamas-Pérez, D. F., González-Guzmán, G. E., Márquez-González, A. R., Padilla-Noriega, R., de Durán-Avelar, M. J., et al. (2011). Identification of Enterococcus faecalis bacteria resistant to heavy metals and antibiotics in surface waters of the Mololoa River in Tepic, Nayarit, Mexico. Environmental Monitoring and Assessment. doi:10.1007/s10661-011-1924-y.

  • Murphy, R. A., & Boyd, E. F. (2008). Three pathogenicity islands of Vibrio cholerae can excise from the chromosome and form circular intermediates. Journal of Bacteriology, 190, 636–647.

    Article  CAS  Google Scholar 

  • Nies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMES Microbiology Reviews, 27, 313–339.

    Article  CAS  Google Scholar 

  • Nies, D. H. (2004). Metals and their compounds in the environment. Part II. In K. Anke, M. Ihnat, & M. Stoeppler (Eds.), The elements: essential and toxic effects on microorganisms. Weinheim: Wiley.

    Google Scholar 

  • Paulsen, I. T., Banerjei, L., Myers, G. S. A., Nelson, K. E., Seshadri, R., Read, T. D., et al. (2003). Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science, 299, 2071–2074.

    Article  CAS  Google Scholar 

  • Reffuveille, F., Leneveu, C., Chevalier, S., Auffray, Y., & Rince, A. (2011). Lipoproteins of Enterococcus faecalis: bioinformatic identification, expression analysis and relation to virulence. Microbiology, 157, 3001–3013.

    Article  CAS  Google Scholar 

  • Rodrigues, D. F. (2011). Biofilters: a solution for heavy metals removal from water? Journal of Bioremediation & Biodegradation. doi:10.4172/2155-6199.1000e101.

  • Sakellaris, H., Luck, S. N., Al-Hasani, K., Rajakumar, K., & Turner, S. A. (2004). Regulated site-specifc recombination of the she pathogenicity island of Shigella exneri. Molecular Microbiology, 52, 1329–1336.

    Article  CAS  Google Scholar 

  • Sandoe, J. A., Wysome, J., West, A. P., Heritage, J., & Wilcox, M. H. (2006). Measurement of ampicillin, vancomycin, linezolid and gentamicin activity against enterococcal biofilms. Journal of Antimicrobial Chemotherapy, 57, 767–770.

    Article  CAS  Google Scholar 

  • Shankar, N., Baghdayan, A. S., Willems, R., Hammerum, A. M., & Jensen, L. B. (2006). Presence of pathogenicity island genes in Enterococcus faecalis isolates from pigs in Denmark. Journal of Clinical Microbiology, 44, 4200–4203.

    Article  CAS  Google Scholar 

  • Silver, S. (1996). Bacterial resistances to toxic metal ions—a review. Gene, 179, 9–19.

    Article  CAS  Google Scholar 

  • Singh, N., & Gadi, R. (2012). Studies on biosorption of Pb(II) by the nonliving biomasses of Pseudomonas oleovorans and Brevundimonas vesicularis and its removal from wastewater samples. European Journal of Scientific Research, 69, 279–289.

    Google Scholar 

  • Sobecky, P. A. (1999). Plasmid ecology of marine sediment microbial communities. Hydrobiologia, 401, 9–18.

    Article  CAS  Google Scholar 

  • Tannock, G. W., & Cook, G. (2002). Enterococci as members of the intestinal microflora of humans. In M. S. Gilmore (Ed.), The enterococci: pathogenesis, molecular biology, and antibiotic resistance (pp. 101–132). Washington, DC: ASM Press.

    Google Scholar 

  • Wheeler, A. L., Hartel, P. G., Godfrey, D. G., Hill, J. L., & Segars, W. I. (2002). Combining ribotyping andlimited host range of Enterococcus faecalis for microbial source tracking. Journal of Environmental Quality, 31, 1286–1293.

    Article  CAS  Google Scholar 

  • Wuertz, S., & Mergeay, M. (1997). The impact of heavy metals on soil microbial communities and their activities. In J. D. van Elsas, E. M. H. Wellington, & J. T. Trevors (Eds.), Modern soil microbiology (pp. 1–20). New York: Marcel Decker.

    Google Scholar 

Download references

Acknowledgments

This research project has been supported by Kırıkkale University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulent Icgen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aktan, Y., Tan, S. & Icgen, B. Characterization of lead-resistant river isolate Enterococcus faecalis and assessment of its multiple metal and antibiotic resistance. Environ Monit Assess 185, 5285–5293 (2013). https://doi.org/10.1007/s10661-012-2945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2945-x

Keywords

Navigation