Skip to main content

Advertisement

Log in

A spatio-temporal index for heat vulnerability assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The public health consequences of extreme heat events are felt most intensely in metropolitan areas where population density is high and the presence of the urban heat island phenomenon exacerbates the potential for prolonged exposure. This research develops an approach to map potential heat stress on humans by combining temperature and relative humidity into an index of apparent temperature. We use ordinary kriging to generate hourly prediction maps describing apparent temperature across the Greater Toronto Area, Canada. Meteorological data were obtained from 65 locations for 6 days in 2008 when extreme heat alerts were issued for the City of Toronto. Apparent temperature and exposure duration were integrated in a single metric, humidex degree hours (HDH), and mapped. The results show a significant difference in apparent temperature between built and natural locations from 3 pm to 7 am; this discrepancy was greatest at 12 am where built locations had a mean of 2.8 index values larger, t(71) = 5.379, p < 0.001. Spatial trends in exposure to heat stress (apparent temperature, ≥30°C) show the downtown core of the City of Toronto and much of Mississauga (west of Toronto) as likely to experience hazardous levels of prolonged heat and humidity (HDH ≥ 72) during a heat alert. We recommend that public health officials use apparent temperature and exposure duration to develop spatially explicit heat vulnerability assessment tools; HDH is one approach that unites these risk factors into a single metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aniello, C., Morgan, K., Busbey, A., & Newland, L. (1995). Mapping micro-urban heat islands using Landsat TM and a GIS. Computers and Geosciences, 21, 965–968.

    Article  Google Scholar 

  • Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water and the urban heat island. International Journal of Climatology, 23, 1–26.

    Article  Google Scholar 

  • Asli, M., & Marcotte, D. (1995). Comparison of approaches to spatial estimation in a bivariate context. Mathematical Geology, 27, 641–658.

    Article  CAS  Google Scholar 

  • Axelsson, S. & Lunden, B. (1988). Atmospheric correction of thermal infrared data from LANDSAT-5 for surface temperature estimation. Proceedings of the 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing, Aussois (Modane), France, January, pp. 197–200.

  • Bailey, T. C., & Gatrell, A. C. (1995). Interactive spatial data analysis. Harlow, Essex: Longman Group.

    Google Scholar 

  • Barenbrug, A. W. T. (1974). Psychrometry and psychrometric charts (3rd ed.). Cape Town: Cape and Transvaal Printers.

    Google Scholar 

  • Basara, J., Basara, H., Illston, B., & Crawford, K. (2010). The impact of the urban heat island during an intense heat wave in Oklahoma City. Advances in Meteorology, 2010, 1–10.

    Article  Google Scholar 

  • Beniston, M. (2004). The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophysical Research Letters, 31, L02202.

    Article  Google Scholar 

  • Buyantuyev, A., & Wu, J. (2010). Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology, 25, 17–33.

    Article  Google Scholar 

  • Campbell, J. B. (2006). Introduction to remote sensing. New York: Guilford.

    Google Scholar 

  • City of Toronto. (2010) Population & dwelling counts. Retrieved 1 August 2010 from http://www.toronto.ca/invest-in-toronto/pop_dwell.htm.

  • Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. International Journal of Climatology, 25, 351–363.

    Article  Google Scholar 

  • Eliasson, I. (1996). Urban nocturnal temperatures, street geometry and land use. Atmospheric Environment, 167, 379–392.

    Article  Google Scholar 

  • Environment Canada. (2010). Being prepared for summer. Retrieved 12 November 2011 from http://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=86C0425B-1.

  • Figuerola, P. I., & Mazzeo, N. A. (1998). Urban–rural temperature differences in Buenos Aires. International Journal of Climatology, 18, 1709–1723.

    Article  Google Scholar 

  • Forkes, J. (2010). Mitigating urban heat in Canada. Toronto, Ontario: Clear Air Partnership.

    Google Scholar 

  • Forsythe, K. W., Dennis, M., & Marvin, C. H. (2004). Comparison of mercury and lead sediment concentrations in Lake Ontario (1968–1998) and Lake Erie (1971–1997/98) using a GIS-based kriging approach. Water Quality Research Journal of Canada, 39, 190–206.

    CAS  Google Scholar 

  • Gartland, L. (2008). Heat islands: Understanding and mitigating heat in urban areas. London: Cromwell.

    Google Scholar 

  • Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113–129.

    Article  Google Scholar 

  • Havenith, G. (2005). Temperature regulation, heat balance and climatic stress. In W. Kirch, B. Menne, & R. Bertollini (Eds.), Extreme weather events and public health responses (pp. 69–80). New York: Springer.

    Chapter  Google Scholar 

  • Hicks, B. B., Callahan, W. J., & Hoekzema, M. A. (2010). On the heat islands of Washington, DC, and New York City, NY. Boundary-Layer Meteorology, 135, 291–300.

    Article  Google Scholar 

  • Huang, W., Kan, H., & Kovats, S. (2010). The impact of the 2003 heat wave on mortality in Shanghai, China. Science of the Total Environment, 408, 2418–2420.

    Article  CAS  Google Scholar 

  • Johnson, D. P., & Wilson, J. S. (2009). The socio-spatial dynamics of extreme urban heat events: The case of heat-related deaths in Philadelphia. Applied Geography, 29, 419–434.

    Article  Google Scholar 

  • Johnston, K., Ver Hoef, J., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS Geostatistical Analyst. Redlands, CA: Environmental Systems Research Institute.

    Google Scholar 

  • Klinenberg, E. (2002). Heat wave: A social autopsy of death in Chicago. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Knight, S., Smith, C., & Roberts, M. (2010). Mapping Manchester's urban heat island. Weather, 65, 188–193.

    Article  Google Scholar 

  • Koffi, B., & Koffi, E. (2008). Heat waves across Europe by the end of the 21st century: Multiregional climate simulations. Climate Research, 36, 153–168.

    Article  Google Scholar 

  • Liang, B., & Weng, Q. (2008). Multiscale analysis of census-based land surface temperature variations and determinants in Indianapolis, United States. Journal of Urban Planning and Development, 134, 129–139.

    Article  Google Scholar 

  • Liu, H., & Weng, Q. (2008). Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA. Environmental Monitoring and Assessment, 144, 199–219.

    Article  Google Scholar 

  • Loughnan, M., Nicholls, N., & Tapper, N. (2010). Mortality–temperature thresholds for ten major population centres in rural Victoria, Australia. Health & Place, 16, 1287–1290.

    Article  Google Scholar 

  • Luber, G., & McGeehin, M. (2008). Climate change and extreme heat events. American Journal of Preventative Medicine, 35(5), 429–435.

    Article  Google Scholar 

  • Maloley, M. J. (2009). Thermal remote sensing of urban heat island effects: Greater Toronto Area. Geological Survey of Canada Open File, 6283.

  • Masterton, J., & Richardson, F. (1979). Humidex, a method of quantifying human discomfort due to excessive heat and humidity. Downsview, Ontario: Environment Canada/Canadian Climate Centre.

    Google Scholar 

  • Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. International Journal of Biometeorology, 51, 323–334.

    Article  Google Scholar 

  • Meehl, G. A., & Tabaldi, C. (2004). More intense, frequent, and longer lasting heat waves in the 21st century. Science, 305, 994–997.

    Article  CAS  Google Scholar 

  • Mersereau, V., & Penney, J. (2008). Developing a geospatial decision support system to address extreme heat and the urban heat island effect in the Greater Toronto Area. Toronto: Clean Air Partnership.

    Google Scholar 

  • Munn, R. (1969). A climatological study of the urban temperature anomaly in the lakeshore environment at Toronto. Journal of Applied Meteorology, 3, 411–422.

    Article  Google Scholar 

  • Oeschsli, F. W., & Buechley, R. W. (1970). Excess mortality associated with three Los Angeles September hot spells. Environmental Research, 3, 277–284.

    Article  Google Scholar 

  • Oke, T. R. (1978). Boundary layer climates. London: Methuen & Co.

    Book  Google Scholar 

  • Oke, T. R. (2006). Initial guidance to obtain representative meteorological observations at urban sites. World Meteorological Organization. Instruments and Observing Methods Report No. 81 WMO/TD-No. 1250.

  • Oke, T. R., & Maxwell, G. B. (1975). Urban heat island dynamics in Montreal and Vancouver. Atmospheric Environment, 9, 191–200.

    Article  Google Scholar 

  • Ontario Ministry of Finance. (2010). Ontario population projections update, 2009–2036. Toronto: Queen’s Park Printer for Ontario.

    Google Scholar 

  • Rees, W. G. (1990). Physical principles of remote sensing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Reid, C. E., O'Neill, M. S., Gronlund, C. J., Brines, S. J., Brown, D. G., Diez-Roux, A. V., & Schwartz, J. (2009). Mapping community determinants of heat vulnerability. Environmental Health Perspectives, 117, 1730–1736.

    Google Scholar 

  • Rinner, C., Patychuk, D., Bassil, K., Nasr, S., Gower, S., & Campbell, M. (2010). The role of maps in neighbourhood-level heat vulnerability assessment for the City of Toronto. Cartography and Geographic Information Science, 37, 31–44.

    Article  Google Scholar 

  • Robine, J., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J., & Herrmann. (2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies, 33, 171–178.

    Article  Google Scholar 

  • Sailor, D. J., & Pavlova, A. A. (2003). Air conditioning market saturation and long-term response of residential cooling energy demand to climate change. Energy, 28, 941–951.

    Article  Google Scholar 

  • Smoyer-Tomic, K. E., & Rainham, D. G. C. (2001). Beating the heat: Development and evaluation of a Canadian hot weather health-response plan. Environmental Health Perspectives, 109, 1241–1248.

    Article  CAS  Google Scholar 

  • Stewart, I. (2009). Classifying urban climate field sites by “local climate zones”. International Association for Urban Climate, 34, 8–11.

    Google Scholar 

  • Stewart, I., & Oke, T. R. (2009). Newly developed “thermal climate zones” for defining and measuring urban heat island magnitude in the canopy layer. AMS 8th Symposium on the Urban Environment, Paper J8.2A, Phoenix, AZ.

  • Streutker, D. R. (2002). Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment, 85, 282–289.

    Article  Google Scholar 

  • Tobias, A., deOlalla, P. G., Linares, C., Bleda, M. J., Cayla, J. A., & Diza, J. (2010). Short-term effects of extreme hot summer temperatures on total daily mortality in Barcelona, Spain. International Journal of Biometeorology, 54, 115–117.

    Article  Google Scholar 

  • Toronto Public Health. (2009). City of Toronto hot weather response plan. Retrieved 15 June 2010 from http://www.toronto.ca/health/heatalerts/pdf/hwr_plan_2009.pdf.

  • Unger, J. (1996). Heat island intensity with different meteorological conditions in a medium-sized town: Szeged, Hungary. Theoretical and Applied Climatology, 54, 147–151.

    Article  Google Scholar 

  • Vandentorren, S., Suzan, F., Medina, S., Pascal, M., Maulpoix, A., Cohen, J. C., & Ledrans, M. (2004). Mortality in 13 French cities during the August 2003 heat wave. American Journal of Public Health, 94(9), 1518–1520.

    Article  Google Scholar 

  • Vescovi, L., Rebetez, M., & Rong, F. (2005). Assessing public health risk due to extremely high temperature events: Climate and social parameters. Climate Research, 30, 71–78.

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. R. (1998). Effects of urban surface geometry on remotely-sensed surface temperature. International Journal of Remote Sensing, 19, 895–920.

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384.

    Article  Google Scholar 

  • Waller, L. A., & Gotway, C. A. (2004). Applied spatial statistics for public health data. New York: Wiley-Interscience.

    Book  Google Scholar 

  • Weber, D., & Englund, E. (1994). Evaluation and comparison of spatial interpolators II. Mathematical Geology, 26, 589–603.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (1992). Sample adequately to estimate variograms of soil properties. Journal of Soil Science, 43, 117–192.

    Google Scholar 

  • Webster, R., & Oliver, M. (2007). Geostatistics for environmental scientists. Statistics in Practice Series. West Sussex, UK: Wiley.

    Book  Google Scholar 

  • Wilhelmi, O. V., Purvis, K. L., & Harriss, R. C. (2004). Designing a geospatial information infrastructure for mitigation of heat wave hazards in urban areas. Natural Hazards Review, 5, 147–158.

    Article  Google Scholar 

  • Yasrebi, J., Saffari, M., Fathi, H., Karimian, N., Moazallahi, M., & Gazni, R. (2009). Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters. Research Journal of Biological Sciences, 4, 93–102.

    Google Scholar 

  • Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106, 375–386.

    Article  Google Scholar 

  • Zhou, Y., & Shepherd, J. M. (2010). Atlanta's urban heat island under extreme heat conditions and potential mitigation strategies. Natural Hazards, 52, 639–668.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Matthew Maloley of Natural Resources Canada for providing access to meteorological data and thermal imagery used in this study. Alison Jackson and Zev Ross provided assistance with geostatistical modelling. Editorial contributions from James Voogt, Stephanie Gower (Toronto Public Health), Kevin Behan (Clean Air Partnership), David Atkinson and two anonymous reviewers greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew A. Millward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kershaw, S.E., Millward, A.A. A spatio-temporal index for heat vulnerability assessment. Environ Monit Assess 184, 7329–7342 (2012). https://doi.org/10.1007/s10661-011-2502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2502-z

Keywords

Navigation