Skip to main content

Advertisement

Log in

Optimisation and application of the voltammetric technique for speciation of chromium in the Patos Lagoon Estuary—Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The chemical speciation analysis of chromium in one of the most important South American Estuary was performed for the first time. Samples were collected in Patos Lagoon Estuary (Brazil) and were analysed by adsorptive cathodic stripping voltammetry, with the following analytical figures of merit: limit of detection, 0.1 nmol L−1; precision RSD = 3%, n = 7; linearity, from limit of quantitation up to 20 nmol L−1; and accuracy of 99.8%, expressed as recovery. No labile chromium forms were identified in samples, beside industries and a city were near the study area. It is pointed out a reverse correlation between total and non-active chromium and salinity, which could be explained by biogeochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen, H. E., & Hansen, D. J. (1996). The importance of chemical speciation to water quality criteria. Water Environment Research, 68, 42–54.

    Article  CAS  Google Scholar 

  • Arslan, G., & Pehlivan, E. (2008). Uptake of Cr3+ from aqueous solution by lignite-based humic acids. Biores Techn, 99, 7597–7605.

    Article  CAS  Google Scholar 

  • Baraj, B., et al. (2003). Trace metal content trend of mussel Perna perna (Linnaeus, 1758) from the Atlantic Coast of Southern Brazil. Water, Air, and Soil Pollution, 145, 205–214.

    Article  CAS  Google Scholar 

  • Batley, G. E. (1989). Trace element speciation: analytical methods and problems. Bocca Raton: CRC.

    Google Scholar 

  • Baumgarten, M. G. Z., & Niencheski, L. F. (1990). O estuário da Lagoa dos Patos: variações de alguns parâmetros físico-químicos da água e metais associados ao material em suspensão. Ciência e Cultura, 42, 390–396.

    Google Scholar 

  • Blas, O. J., et al. (2007). Chromium speciation in water by sorption on calcite and determination by electrothermal atomic absorption spectrometry. Communications in Soil Science and Plant Analysis, 38, 2091–2101.

    Article  Google Scholar 

  • Boussemart, M., et al. (1992). The determination of the chromium speciation in sea water using catalytic cathodic stripping voltammetry. Analytica Chimica Acta, 262, 103–115.

    Article  CAS  Google Scholar 

  • Chen, W., et al. (2005). Automation of liquid–liquid extraction-spectrophotometry using prolonged pseudo-liquid drops and handheld CCD for speciation of Cr(VI) and Cr(III) in water samples. Analytical Sciences, 21, 1189–1193.

    Article  CAS  Google Scholar 

  • Chen, Z., et al. (2007). Removal of interferences in the speciation of chromium using an octopole reaction system in ion chromatography with inductively coupled plasma mass spectrometry. Talanta, 73, 948–952.

    Article  CAS  Google Scholar 

  • Cieslak-Golonda, M. (1996). Toxic and mutagenic effects of chromium(VI). A review. Polyhedron, 15, 3667–3689.

    Article  Google Scholar 

  • Clark, R. B. (1997). Marine pollution. Oxford: Clarendon.

    Google Scholar 

  • Connel, D. W. (1997). Basic concepts of environmental chemistry. New York: Lewis Publishers.

    Google Scholar 

  • El-Shahawi, M. S., et al. (2005). Chemical speciation of chromium(III, VI) employing extractive spectrophotometry and tetraphenylarsonium chloride or tetraphenylphosphonium bromide as ion-pair reagent. Analytica Chimica Acta, 534, 319–326.

    Article  CAS  Google Scholar 

  • Ferreira, A. D. (2002). O impactodo crômio nos sistemas biológicos. Quim Nova, 25, 572–578.

    Article  CAS  Google Scholar 

  • Friedrich, A. C. (2004). M. Sc. Dissertation, Universidade Federal do Rio Grande, Brazil

  • Gil, R. A., et al. (2005). On-line preconcentration and determination of chromium in parenteral solutions by inductively coupled plasma optical emission spectrometry. Spectrochimica Acta Part B, 60, 531–535.

    Article  Google Scholar 

  • Guo, L., et al. (2001). Effect of dissolved organic matter on the uptake of trace metals by American oysters. Environmental Science & Technology, 35, 885–893.

    Article  CAS  Google Scholar 

  • Hilala, N., et al. (2008). Effects of heavy metals and polyelectrolytes in humic substance coagulation under saline conditions. Desalination, 220, 85–95.

    Article  Google Scholar 

  • Kaczynski, S. E., & Kieber, R. J. (1993). Aqueous trivalent chromium photoproduction in natural water. Environmental Science & Technology, 27, 1572–1576.

    Article  CAS  Google Scholar 

  • Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283.

    Article  CAS  Google Scholar 

  • Krishna, M. V. B., et al. (2005). Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS. Talanta, 65, 135–143.

    Google Scholar 

  • Li, Y., & Xue, H. (2001). Determination of Cr(III) and Cr(VI) species in natural waters by catalytic cathodic stripping voltammetry. Analytica Chimica Acta, 448, 121–134.

    Article  CAS  Google Scholar 

  • Liang, P., & Sang, H. (2008). Speciation of chromium in water samples with cloud point extraction separation and preconcentration and determination by graphite furnace atomic absorption spectrometry. J Haz Mat, 154, 1115–1119.

    Article  CAS  Google Scholar 

  • Masscheleyn, P. H., et al. (1992). Speciated measurements and calculated reactivities of vehicle exhaust emissions from conventional and reformulated gasolines. Environmental Science & Technology, 26, 1217–1226.

    Article  CAS  Google Scholar 

  • Menegario, A. A., et al. (2005). On-line preconcentration and speciation analysis of Cr(III) and Cr(VI) using baker’s yeast cells immobilised on controlled pore glass. Analytica Chimica Acta, 546, 244–250.

    Article  CAS  Google Scholar 

  • Milani, I. C. B., et al. (2005). Minimização da contaminação na determinação de metais traços em águas naturais. Vetor, 15, 93–99.

    Google Scholar 

  • Nakayama, E., et al. (1981). Chemical speciation of chromium in sea water: Part 1. Effect of naturally occurring organic materials on the complex formation of chromium(III). Analytica Chimica Acta, 130, 289–294.

    Article  CAS  Google Scholar 

  • Niencheski, L. F., & Baumgarten, M. G. Z. (2000). Distribution of particulate trace metal in the southern part of the Patos Lagoon estuary. Aquat Ecosys Health Manage, 3, 515–520.

    Article  CAS  Google Scholar 

  • Parodi, B., et al. (2005). Application of biological substrates to the speciation analysis of Cr(III) and Cr(VI). Atomic Spectroscopy, 26, 102–109.

    CAS  Google Scholar 

  • Pechova, A., & Pavlata, L. (2007). Chromium as an essential nutrient: a review. Vet Med, 52, 1–18.

    CAS  Google Scholar 

  • Primel, E. G., et al. (2010). Development and application of methods using SPE, HPLC-DAD, LC-ESI-MS/MS and GFAAS for the determination of herbicides and metals in surface and drinking water. Int J Environ Anal Chem, 90, 1048–1062.

    Article  CAS  Google Scholar 

  • Rodrigues, M. L. K. (2007) Ph.D. thesis, Universidade Federal do Rio Grande do Sul, Brazil

  • Sánchez-Marína, P., et al. (2010). Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae. Aq Toxic, 96, 90–102.

    Article  Google Scholar 

  • Saygi, K. O., et al. (2008). Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry. J Haz Mat, 153, 1009–1014.

    Article  CAS  Google Scholar 

  • Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Envir Inter, 35, 743–759.

    Article  CAS  Google Scholar 

  • Silva, C. S. and Pedroso, M. F. (2001). Cadernos de Referência Ambiental: Ecotoxicologia do cromo e seus compostos, 5.

  • Sumida, T., et al. (2005). On-line preconcentration using dual mini-columns for the speciation of chromium(III) and chromium(VI) and its application to water samples as studied by inductively coupled plasma-atomic emission spectrometry. Talanta, 68, 388–393.

    Article  CAS  Google Scholar 

  • Windom, H. L., et al. (1994). Distribution of particulate trace metal in Patos Lagoon estuary (Brazil). Marine Pollution Bulletin, 28(2), 96–102.

    Article  Google Scholar 

  • Ying, L., et al. (2008). Adsorption thermodynamic and kinetic studies of dissolved chromium onto humic acids. Col Surf B, 65, 25–29.

    Article  Google Scholar 

  • Zazo, J. A., et al. (2008). Influence of plants on the reduction of hexavalent chromium in wetland sediments. Envir Poll, 156, 29–35.

    Article  CAS  Google Scholar 

  • Zhu, X., et al. (2005). Cloud point extraction for speciation of chromium in water samples by electrothermal atomic absorption spectrometry. Water Research, 39, 589–595.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq (process no. 485115/2007-7), the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) (process no. 0701865) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial supporting. They also thank CORSAN, a Brazilian company for water treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Raimundo Milani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, A.R., Niencheski, L.F., Milani, I.C.B. et al. Optimisation and application of the voltammetric technique for speciation of chromium in the Patos Lagoon Estuary—Brazil. Environ Monit Assess 184, 5553–5562 (2012). https://doi.org/10.1007/s10661-011-2361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2361-7

Keywords

Navigation