Skip to main content

Advertisement

Log in

Chloride migration in groundwater for a tannery belt in Southern India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Groundwater in a tannery belt in Southern India is being polluted by the discharge of untreated effluents from 80 operating tanneries. Total dissolved solids and chloride (Cl) measurements in open wells in the tannery cluster vary from 27,686 to 39,100 and 12,000 to 13,652 mg/l, respectively. A mass transport model was constructed using Visual MODFLOW Premium 4.4 software to investigate the chloride migration in an area of 75.56 km2. Input to the chloride migration model was a groundwater flow model that considered steady and transient conditions. This model was calibrated with field observations; and sensitivity analysis was carried out whereby model parameters, viz., conductivity, dispersivity, and source concentration were altered slightly, and the effect on calibration statistics was evaluated. Results indicated that hydraulic conductivity played a more sensitive role than did dispersivity. The Cl migration was mainly through advection rather than dispersion. It was found that even if the pollutant load reduced to 50% of the present level, the Cl concentration in groundwater, even after 6 years, would not be reduced to the permissible limit of drinking water in the tannery belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association (APHA) (1985). Standard methods for the examination of water and waste (16th ed., p. 100). Washington: American Public Health Association.

    Google Scholar 

  • Anderson, M. P., & Woessner, W. W. (1992). Applied ground water modeling: Simulation of flow and advective transport (p. 381). San Diego: Academic.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). Rotterdam: Balkema.

    Book  Google Scholar 

  • Bhattacharya, P. K., & Patra, H. P. (1968). Direct current geoelectric sounding-principles and interpretation (p. 135). Amsterdam: Elsevier.

    Google Scholar 

  • Bredenkamp, D. B., & Vogel, J. C. (1970). Study of a dolomite aquifer with carbon-14 and tritium. In Isotope hydrology 1970, Proc. of an IAEA symposium, Vienna (pp. 9–13).

  • Browen, E., Skougstad, M. W., & Fishman, M. J. (1974). Method for collection and analysis of water samples for dissolved mineral and gasses (p. 75). Washington, DC: US Govt. Printing.

    Google Scholar 

  • Chakrapani, R., & Manickyan, P. M. (1988). Groundwater resources and developmental potential of Anna District, Tamil Nadu State (p. 49). CGWB Rept., Southern Region, Hyderabad.

  • Chand, R., Hodlur, G. K., Ravi Prakash, M., Mondal, N. C., & Singh, V. S. (2005). Reliable natural recharge estimates in granite terrain. Current Science, 88(5), 821–824.

    CAS  Google Scholar 

  • Chen, J. W., Hsieh, H. H., Yeh, H. F., & Lee, C. H. (2010). The effect of the variation of river water levels on the estimation of groundwater recharge in the Hsinhuwei River, Taiwan. Environmental Earth Science, 59, 1297–1307. doi:10.1007/s12665-009-0117-2.

    Article  Google Scholar 

  • Chowdary, V. M., Ramakrishnan, D., Srivastava, Y. K., Chandran, V., & Jeyaram, A. (2009). Integrated water resource development plan for sustainable management of Mayurakshi watershed, India using remote sensing and GIS. Water Resource Management, 23(8), 1581–1602.

    Article  Google Scholar 

  • Compagnie General de Geophysique (1963). Master curves for electrical sounding (2nd ed., p. 49). The Hague: European Association of Exploration Geophysicists (EAEG).

    Google Scholar 

  • Dhakate, R., Singh, V. S., & Hodlur, G. K. (2008). Impact assessment of chromite mining on groundwater through simulation modeling study in Sukinda chromite mining area, Orissa, India. Journal of Hazardous Materials, 160, 535–547.

    Article  CAS  Google Scholar 

  • Feehley, C. E., Zheng, C., & Molz, F. J. (2000). A dual-domain mass transfer approach for modeling solute transport in heterogeneous aquifers: Application to the macrodispersion experiment (MADE) site. Water Resources Research, 36(9), 2501–2515.

    Article  Google Scholar 

  • Fetter, C. W. (2001). Applied hydrogeology (4th ed.). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Fetter, C. W. J. (1993). Contaminant hydrogeology (p. 458). New York: Macmillan.

    Google Scholar 

  • Fischer, W. T., & Ellis, P. M. (2001). An application of delaware’s risk-based corrective action program: To a site with MTBE contamination. Soil and Sediment Contamination: An International Journal, 10(4), 405–421.

    Article  CAS  Google Scholar 

  • Ground Water Resource Estimation Committee (GWREC) (1997). Ministry of water resources. New Delhi: Government of India.

    Google Scholar 

  • Javandel, I., Doughty, C., & Tsang, C. F. (1984). Groundwater transport: Handbook of mathematical models (p. 228). American Geophysical Union Water Resources Monogram.

  • Konikow, L. F., & Bredehoeft, J. D. (1978). Computer model of two-dimensional solute transport and dispersion in groundwater: Techniques of water-resources investigations of the USGS (Chapter C2, Book 7, p. 90).

  • Krishnan, M. S. (1982). Geology of India and Burma. New Delhi, India: CBS.

    Google Scholar 

  • McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite difference ground-water flow model (Book 6, Chapter A1, p. 586). U.S. Geological Survey Techniques of Water-Resources Investigations.

  • McKenzie, J. M., Siegel, D. I., Shotyk, W., Steinmann, P., & Pfunder, G. (2002). Heuristic numerical and analytical models of the hydrologic controls over vertical solute transport in a domed peat bog, Jura Mountains, Switzerland. Hydrological Processes, 16, 1047–1064.

    Article  Google Scholar 

  • Meybeck, M. (1979). Concentrations des eaux fluviales en elements majeurs et apports en solution aux oce’ans. Revue de Géologie Dynamique et de Géographie Physique, 21, 215–246.

    CAS  Google Scholar 

  • Molykutty, M. V., Srinivasaraghavan, R., & Thayumanavan, S. (2007). Ground water quality modelling of Upper Palar basin. International Journal of Modelling and Simulation, 27(3), 252–257.

    Google Scholar 

  • Mondal, N. C., & Singh, V. P. (2010a). Need of groundwater management in tannery belt: A scenario about Dindigul town, Tamil Nadu. Journal of The Geological Society of India, 76(3), 303–309.

    Google Scholar 

  • Mondal, N. C., & Singh, V. P. (2010b). Entropy-based approach for estimation of natural recharge in Kodaganar River basin, Tamil Nadu, India. Current Science, 99(11), 1560–1569.

    Google Scholar 

  • Mondal, N. C., & Singh, V. S. (2004). A new approach to delineate the groundwater recharge zone in hard rock terrain. Current Science, 87(5), 658–662.

    Google Scholar 

  • Mondal, N. C., Saxena, V. K., & Singh, V. S. (2005). Assessment of groundwater pollution due to tanneries in and around Dindigul, Tamilnadu, India. Environmental Geology, 48(2), 149–157.

    Article  CAS  Google Scholar 

  • Muralidharan, D., & Shanker, G. B. K. (2000). Various methodologies of artificial recharge for sustainable groundwater in quantity and quality for developing water supply schemes. In Proc. of the all Indian seminar on water vision for the 21st century, IAH, Jadavpur University, Kolkata (pp. 208–229).

  • Nonner, J. C. (2006). Introduction to hydrogeology. IHE Delft lecture notes series. London: Taylor and Francis.

    Google Scholar 

  • Orellana, E., & Mooney, H. M. (1966). Master tables and curves for vertical electrical sounding over layered structures (p. 193). Madrid, Spain: Interciencia.

    Google Scholar 

  • Paul Basker, J. (2000). Tannery pollution and its effect on people’s life in Dindigul area. Dossier on tannery pollution in Tamilnadu (pp. 195–197). Tirunelveli: Peace Trust.

    Google Scholar 

  • Peace Trust (2000). Dossier on tannery pollution in Tamilnadu (p. 280). Tirunelveli: Peace Trust.

    Google Scholar 

  • Public Works Department (PWD) (2000). Groundwater perspectives: A profile of Dindigul District, Tamilnadu (p. 102). Chennai: PWD.

    Google Scholar 

  • Rahman, N. A., & Kuan, W. K. (2004). Simulation of groundwater flow and pollutant transport for alluvial aquifer in Kampung Tekek, Tioman Island. Jurnal Teknologi, 41(B) Dis. 2004, 21–34.

  • Raj, P. (2001). Trend analysis of groundwater fluctuations in a typical groundwater year in weathered and fractured rock aquifers in parts of Andhra Pradesh. Journal of The Geological Society of India, 58, 5–13.

    CAS  Google Scholar 

  • Rangarajan, R., Mondal, N. C., Singh, V. S., & Singh, S. V. (2009). Estimation of natural recharge and its relation with aquifer parameters in and around Tuticorin town, Tamil Nadu, India. Current Science, 97(2), 217–226

    Article  Google Scholar 

  • Rijkswaterstaat (1969). Standard graphs for resistivity prospecting. The Netherlands: Rijkswaterstaat.

    Google Scholar 

  • Rushton, K. R., & Redshaw, S. C. (1979). Seepage and groundwater flow (p. 339). Chichester: Wiley.

    Google Scholar 

  • Salama, R. B., Tapley, I., Ishii, T., & Hawkes, G. (1994). Identification of areas of recharge and discharge using Landsat-TM satellite imagery and aerial-photography mapping techniques. Journal of Hydrology, 162(12), 119–141.

    Article  Google Scholar 

  • Sarwade, D. V., Singh, V. S., Puranik, S. C., & Mondal, N. C. (2007). Comparative study of analytical and numerical methods for estimation of aquifers parameters: A case study in basaltic terrain. Journal of the Geological Society of India, 70(6), 1039–1046.

    Google Scholar 

  • Sibanda, T., Nonner, J. C., & Uhlenbrook, S. (2009). Comparison of groundwater recharge estimation methods for the semi-arid Nyamandhlovu area, Zimbabwe. Hydrogeological Journal, 17, 1427–1441.

    Article  CAS  Google Scholar 

  • Singh, V. S. (2000). Well storage effect during pumping test in an aquifer of low permeability. Hydrological Science Journal, 45(4), 589–594.

    Article  Google Scholar 

  • Singh, V. S., Mondal, N. C., Barker, R., Thangarajan, M., Rao, T. V., & Subramaniyam, K. (2003). Assessment of groundwater regime in Kodaganar river basin (Dindigul district), Tamilnadu (p. 104). Tech. Rept. No.-NGRI-2003-GW-269.

  • Tellam, J .H. (1995). Hydrochemistry of the saline groundwaters of the lower Mersey Basin Permo-Triassic sandstone aquifer, UK. Journal of Hydrology, 165, 45–84.

    Article  CAS  Google Scholar 

  • Tiwary, R. K., Dhakate, R., Rao, V. A., & Singh, V. S. (2005). Assessment and prediction of contaminant migration in groundwater from chromite waste. Environmental Geology, 48(4–5), 420–429.

    Article  CAS  Google Scholar 

  • Turekian, K. K. (1977). Geochemical distribution of elements (4th ed., pp. 630). New York: McGraw-Hill.

    Google Scholar 

  • Vender Velpen, B. P. A. (1988). A computer processing package for D.C. resistivity interpretation for IBM compatibles (Vol. 4). ITC Jour., The Netherlands.

  • Vizintin, G., Souvent, P., Veselic, M., & Curk, B. C. (2009). Determination of urban groundwater pollution in alluvial aquifer using linked process models considering urban water cycle. Journal of Hydrology, 377, 261–273.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (1984). Guideline of drinking quality (pp. 335). Washington: World health Organization.

    Google Scholar 

  • Zimmermann, U., Munnich, K. O., & Roether, W. (1967). Downward movement of soil moisture traced by means of hydrogen isotopes. Geophysical Monograph American Geophysical Union, 11, 28–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Mondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, N.C., Singh, V.P. Chloride migration in groundwater for a tannery belt in Southern India. Environ Monit Assess 184, 2857–2879 (2012). https://doi.org/10.1007/s10661-011-2156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2156-x

Keywords

Navigation