Skip to main content
Log in

Biomanipulation of hypereutrophic ponds: when it works and why it fails

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Phytoplankton, zooplankton, submerged vegetation and main nutrients have been monitored in 48 eutrophic ponds from the Brussels Capital Region (Belgium) between 2005 and 2008. Nine ponds have been biomanipulated in order to improve their ecological quality and prevent the occurrence of noxious cyanobacterial blooms. The 4-year study of a large number of ponds allowed identification of the factors having the strongest influence on phytoplankton growth. Continuous monitoring of the biomanipulated ponds allowed the significance of changes caused by biomanipulation to be tested as well as the main reasons of biomanipulation successes and failures to be elucidated. The main factors controlling phytoplankton in the ponds studied appeared to be grazing by large cladocerans and inhibition of phytoplankton growth by submerged vegetation. Biomanipulation resulted in a significant decrease in phytoplankton biomass in general and biomass of bloom-forming cyanobacteria in particular that were associated with a significant increase in large Cladocera density and size. In six out of nine ponds biomanipulation resulted in the restoration of submerged vegetation. The maintenance of the restored clearwater state in the biomanipulated ponds was strongly dependent on fish recolonisation and nutrient level. In the absence of fish, the clearwater state could be maintained by submerged vegetation or large zooplankton grazing alone. In case of fish recolonisation, restoration of extensive submerged vegetation could buffer, to a considerable degree, the effect of fish except for ponds with high nutrient levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benndorf, J., Wissel, B., Sell, A. F., Hornig, U., Ritter, P., & Böing, W. (2000). Food web manipulation by extreme enhancement of piscivory: An invertebrate predator compensates for the effects of planktivorous fish on a plankton community. Limnologica-Ecology and Management of Inland Waters, 30, 235–245.

    Article  Google Scholar 

  • Blindow, I., Hargeby, A., Wagner, B. M. A., & Andersson, G. (2000). How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwater Biology, 44, 185–197.

    Article  Google Scholar 

  • Carpenter, S. R. (2005). Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. PNAS, 102, 10002–10005.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., Cole, J. J., Hodgson, J. R., Kitchell, J. F., Pace, M. L., Bade, D., et al. (2001). Trophic cascades, nutrients, and lake productivity: Whole-lake experiments. Ecological Monographs, 71, 163–186.

    Article  Google Scholar 

  • Descy, J.-P., Pirlot, S., Vernier, G., Lara, Y., Wilmotte, A., Vyverman, W., et al. (2009). Cyanobacterial blooms: Toxicity, diversity, modelling and managment. Report B-Blooms 2 (p. 56). Namur, Gent, Liege, Brussels, Dundee: FUNDP, UGent, ULg, University of Dundee, VUB.

  • Gliwicz, Z. M. (1990a). Food thresholds and body size in cladocerans. Nature, 343, 638–640.

    Article  Google Scholar 

  • Gliwicz, Z. M. (1990b). Why do cladocerans fail to control algal blooms? Hydrobiologia, 200, 83–97.

    Article  Google Scholar 

  • Gulati, R., & van Donk, E. (2002). Lakes in The Netherlands, their origin, eutrophication and restoration: State-of-the-art review. Hydrobiologia, 478, 73–106.

    Article  Google Scholar 

  • Hasle, G. R. (1978). The inverted-microscope method. In A. Sournia (Ed.), Phytoplankton manual (pp. 88–96). Paris: UNESCO.

    Google Scholar 

  • Hudnell, K. H. (2008). Cyanobacterial harmful algal blooms. New York: Springer.

    Book  Google Scholar 

  • Irfanullah, H. M., & Moss, B. (2005). A filamentous green algae-dominated temperate shallow lake: Variations on the theme of clearwater stable states? Archiv Fur Hydrobiologie, 163, 25–47.

    Article  CAS  Google Scholar 

  • Jeppesen, E., Jensen, J. P., Kristensen, P., Søndergaard, M., Mortensen, E., Sortkjaer, O., et al. (1990). Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes. 2. Threshold levels, long-term stability and conclusions. Hydrobiologia, 200, 219–227.

    Article  Google Scholar 

  • Jeppesen, E., Jensen, P. J., Søndergaard, M., & Lauridsen, T. L. (1999). Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia, 408/409, 217–231.

    Article  CAS  Google Scholar 

  • Jeppesen, E., Jensen, J. P., Søndergaard, M., & Lauridsen, T. L. (2005). Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics. Freshwater Biology, 50, 1616–1627.

    Article  CAS  Google Scholar 

  • Jeppesen, E., Sondergaard, M., Meerhoff, M., Lauridsen, T. L., & Jensen, J. P. (2007). Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia, 584, 239–252.

    Article  CAS  Google Scholar 

  • Kemp, P. F., Sherr, B. F., Sherr, E. B., & Cole, J. J. (1993). Handbook of methods in aquatic microbial ecology. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Lammens, E. H. H. R. (1999). The central role of fish in lake restoration and management. Hydrobiologia, 395/396, 191–198.

    Article  CAS  Google Scholar 

  • Lauridsen, T. L., Jensen, J. P., Jeppesen, E., & Sondergaard, M. (2003). Response of submerged macrophytes in Danish lakes to nutrient loading reductions and biomanipulation. Hydrobiologia, 506, 641–649.

    Article  Google Scholar 

  • Magnuson, J. J., Tonn, W. M., Banerjee, A., Toivonen, J., Sanchez, O., & Rask, M. (1998). Isolation vs. extinction in the assembly of fishes in small northern lakes. Ecology, 79, 2941–2956.

    Article  Google Scholar 

  • Moss, B. (2007). The art and science of lake restoration. Hydrobiologia, 581, 15–24.

    Article  Google Scholar 

  • Moss, B., Madgwick, J., & Phillips, G. (1996a). A guide to the restoration of nutrient-enriched shallow lakes. Norwich: Broads Authority.

    Google Scholar 

  • Moss, B., Stansfield, J., Irvine, K., Perrow, M., & Phillips, G. (1996b). Progressive restoration of a shallow lake: A 12-year experiment in isolation, sediment removal and biomanipulation. Journal of Applied Ecology, 33, 71–86.

    Article  Google Scholar 

  • Moss, B., Stephen, D., Alvarez, C., Becares, E., Van de Bund, W., Collings, S. E., et al. (2003). The determination of ecological status in shallow lakes—a tested system (ECOFRAME) for implementation of the European water framework directive. Aquatic Conservation: Marine and Freshwater Ecosystems, 13, 507–549.

    Article  Google Scholar 

  • Paerl, H. W. (1988). Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology and Oceanography, 33, 823–847.

    Article  CAS  Google Scholar 

  • Peretyatko, A. (2007) Phytoplankton dynamics in Eutrophic peri-urban ponds in relation to biotic and abiotic factors; implications for management and restoration. Ph.D. thesis. Brussels: Vrije Universiteit Brussel.

  • Peretyatko, A., Symoens, J.-J., & Triest, L. (2007a). Impact of macrophytes on phytoplankton in eutrophic peri-urban ponds, implications for pond management and restoration. Belgian Journal of Botany, 140, 83–99.

    Google Scholar 

  • Peretyatko, A., Teissier, S., Symoens, J.-J., & Triest, L. (2007b). Phytoplankton biomass and environmental factors over a gradient of clear to turbid peri-urban ponds. Aquatic Conservation: Marine and Freshwater Ecosystems, 17, 584–601.

    Article  Google Scholar 

  • Peretyatko, A., Teissier, S., De Backer, S., & Triest, L. (2009). Restoration potential of biomanipulation for eutrophic peri-urban ponds: The role of zooplankton size and submerged macrophyte cover. Hydrobiologia, 634, 125–135.

    Article  Google Scholar 

  • Pinel-Alloul, B. (1995). Impacts des prédateurs invertébrés sur les communautés aquatiques. In R. Pourriot, & M. Meybeck (Eds.), Limnologie Générale (pp. 628–686). Paris: Masson.

    Google Scholar 

  • Pourriot, R. (1995). Réponses adaptatives du zooplancton à la prédation. In R. Pourriot, & M. Meybeck (Eds.), Limnologie Générale (pp. 610–627). Paris: Masson.

    Google Scholar 

  • Reynolds, C.S. (2006). Ecology of phytoplankton. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Scheffer, M. (1998). Ecology of shallow lakes. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Scheffer, M., & Jeppesen, E. (1998). Alternative stable states. In E. Jeppesen, M. Sondergaard, M. Sondergaard, & K. Christoffersen (Eds.), The structuring role of submerged macrophytes in lakes (pp. 397–406). New York: Springer.

    Chapter  Google Scholar 

  • Scheffer, M., van Geest, G. J., Zimmer, K., Jeppesen, E., Søndergaard, M., Butler, M. G., et al. (2006). Small habitat size and isolation can promote species richness: Second-order effects on biodiversity in shallow lakes and ponds. Oikos, 112, 227–231.

    Article  Google Scholar 

  • Shapiro, J. (1990). Biomanipulation: The next phase—making it stable. Hydrobiologia, 200–201, 13–27.

    Article  Google Scholar 

  • Shapiro, J. (1995). Lake restoration by biomanipulation—a personal view. Environmental Reviews, 3, 83–93.

    Article  Google Scholar 

  • Shapiro, J., & Wright, D. I. (1984). Lake restoration by biomanipulation—round Lake, Minnesota, the first 2 years. Freshwater Biology, 14, 371–383.

    Article  Google Scholar 

  • Simons, J., Ohm, M., Daalder, R., Boers, P., & Rip, W. (1994). Restoration of Botshol (The Netherlands) by reduction of external nutrient load: Recovery of a Characean community, dominated by Chara connivens. Hydrobiologia, 275/276, 243–253.

    Article  Google Scholar 

  • Søndergaard, M., & Moss, B. (1998). Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In E. Jeppesen, M. Sondergaard, M. Sondergaard, & K. Christoffersen (Eds.), The structuring role of submerged macrophytes in lakes (pp. 115–133). New York: Springer.

    Chapter  Google Scholar 

  • Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2005a). Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshwater Biology, 50, 1605–1617.

    Article  Google Scholar 

  • Søndergaard, M., Jeppesen, E., & Jensen, J.P. (2005b). Pond or lake: Does it make any difference? Archiv Fur Hydrobiologie, 162, 143–165.

    Article  Google Scholar 

  • Søndergaard, M., Jeppesen, E., Lauridsen, T. L., Skov, C., Van Nes, E. H., Roijackers, R., et al. (2007). Lake restoration: Successes, failures and long-term effects. Journal of Applied Ecology, 44, 1095–1105.

    Article  Google Scholar 

  • Sondergaard, M., Liboriussen, L., Pedersen, A. R., & Jeppesen, E. (2008). Lake restoration by fish removal: Short- and long-term effects in 36 Danish lakes. Ecosystems, 11, 1291–1305.

    Article  CAS  Google Scholar 

  • ter Braak, C. J. F., & Smilauer, P. (2002). CANOCO reference manual and user’s guide to Canoco for Windows: Software for canonical community ordination (Version 4.5). Ithaca: Microcomputer Power.

    Google Scholar 

  • Tessier, A. J., & Woodruff, P. (2002). Cryptic trophic cascade along a gradient of lake size. Ecology, 83, 1263–1270.

    Article  Google Scholar 

  • van Donk, E., & van de Bund, W. J. (2002). Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: Allelopathy versus other mechanisms. Aquatic Botany, 72, 261–274.

    Article  Google Scholar 

  • Van Wichelen, J., Declerck, S., Muylaert, K., Hoste, I., Geenens, V., Vandekerkhove, J., et al. (2007). The importance of drawdown and sediment removal for the restoration of the eutrophied shallow Lake Kraenepoel (Belgium). Hydrobiologia, 584, 291–303.

    Article  Google Scholar 

  • Wetzel, G. R., & Likens, E. G. (1990). Limnological analyses. New York: Springer.

    Google Scholar 

  • Willame, R., Jurczak, T., Iffly, J. F., Kull, T., Meriluoto, J., & Hoffmann, L. (2005). Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiologia, 551, 99–117.

    Article  CAS  Google Scholar 

  • Williams, P., Whitfield, M., Biggs, J., Bray, S., Fox, G., Nicolet, P., et al. (2003). Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation, 115, 329–341.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Peretyatko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peretyatko, A., Teissier, S., De Backer, S. et al. Biomanipulation of hypereutrophic ponds: when it works and why it fails. Environ Monit Assess 184, 1517–1531 (2012). https://doi.org/10.1007/s10661-011-2057-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2057-z

Keywords

Navigation