Skip to main content

Advertisement

Log in

The BIOTA Biodiversity Observatories in Africa—a standardized framework for large-scale environmental monitoring

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The international, interdisciplinary biodiversity research project BIOTA AFRICA initiated a standardized biodiversity monitoring network along climatic gradients across the African continent. Due to an identified lack of adequate monitoring designs, BIOTA AFRICA developed and implemented the standardized BIOTA Biodiversity Observatories, that meet the following criteria (a) enable long-term monitoring of biodiversity, potential driving factors, and relevant indicators with adequate spatial and temporal resolution, (b) facilitate comparability of data generated within different ecosystems, (c) allow integration of many disciplines, (d) allow spatial up-scaling, and (e) be applicable within a network approach. A BIOTA Observatory encompasses an area of 1 km2 and is subdivided into 100 1-ha plots. For meeting the needs of sampling of different organism groups, the hectare plot is again subdivided into standardized subplots, whose sizes follow a geometric series. To allow for different sampling intensities but at the same time to characterize the whole square kilometer, the number of hectare plots to be sampled depends on the requirements of the respective discipline. A hierarchical ranking of the hectare plots ensures that all disciplines monitor as many hectare plots jointly as possible. The BIOTA Observatory design assures repeated, multidisciplinary standardized inventories of biodiversity and its environmental drivers, including options for spatial up- and downscaling and different sampling intensities. BIOTA Observatories have been installed along climatic and landscape gradients in Morocco, West Africa, and southern Africa. In regions with varying land use, several BIOTA Observatories are situated close to each other to analyze management effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aamlid, D., Canullo, R., & Starlinger, F. (Eds.) (2007). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests—Part VIII: Assessment of ground vegetation (Updated 10/2007). http://www.icp-forests.org/pdf/manual8.pdf. Accessed 26 July 2010.

  • Aïdoud, A., Jauffret, S., & Sakona, Y., (2008). Long-term environmental monitoring in a circum-Saharan network: The ROSELT/OSS experience. OSS Synthesis Collection 3. Tunis: OSS, Tunis.

    Google Scholar 

  • Alexander, R., & Millington, A. C. (Eds.) (2000). Vegetation mapping: From patch to planet. Chichester: Wiley.

    Google Scholar 

  • Anyamba, A., & Eastman, J. R. (1996). Interannual variability of NDVI over Africa and its relation to El Nino Southern Oscillation. International Journal of Remote Sensing, 17, 2533–2548.

    Google Scholar 

  • Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species–climate impact models under climate change. Global Change Biology, 11, 1504–1513.

    Google Scholar 

  • Araya, Y. N., Schmiedel, U., & von Witt, C. (2009). Linking ‘citizen scientists’ to professionals in ecological research, examples from Namibia and South Africa. Conservation Evidence, 6, 11–17.

    Google Scholar 

  • Ash, N., Jürgens, N., Leadley, P., Alkemade, R., Araújo, M. B., Asner, G. P., et al. (2009). bioDISCOVERY: Assessing, monitoring and predicting biodiversity change. bioDISCOVERY Science Plan and Implementation Strategy. DIVERSITAS Rep. 7. DIVERSITAS, Paris, http://www.diversitas-international.org/uploads/File/bioDiscovery_sp_final.pdf. Accessed 26 July 2010.

  • Balinski, M., & Ramirez, V. (1999). Parametric methods of apportionment, rounding and production. Mathematical Social Science, 37, 107–122.

    Google Scholar 

  • Balmford, A., Crane, P., Dobson, A., Green, R. E., & Mace, G. (2005). The 2010 challenge: Data availability, information needs and extraterrestrial insights. Philosophical Transactions of the Royal Society B, 360, 221–228.

    Google Scholar 

  • Berendsohn, W. G. (1997). A taxonomic information model for botanical databases: The IOPI Model. Taxon, 46, 283–309.

    Google Scholar 

  • Bischoff, C., & Dröschmeister, R. (Eds.) (2000). European monitoring for nature conservation. Schriftenreihe für Lanschaftspflege und Naturschutz 62 (199 pp.). Bonn: Bundesamt für Naturschutz.

    Google Scholar 

  • Blaum, N., & Wichmann, M. (2007). Short term transformation of matrix into hospitable habitat facilitates gene flow and mitigates fragmentation. Journal of Animal Ecology, 76, 1116–1127.

    Google Scholar 

  • Botta-Dukát, Z., Kovács-Láng, E., Rédei, T., Kertész, M., & Garadnai, J. (2007). Statistical and biological consequences of preferential sampling in phytosociologiy: Theoretical considerations and a case study. Folia Geobotanica, 42, 141–152.

    Google Scholar 

  • Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K., et al. (2009). Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbial Ecology, 57, 229–247.

    Google Scholar 

  • Bunce, R. G. H. (2000). The experience of the Countryside Survey in Great Britain for monitoring biodiversity of the wider countryside. In C. Bischoff & R. Dröschmeister (Eds.), European monitoring for nature conservation. Schriftenreihe für Lanschaftspflege und Naturschutz 62 (pp. 95–104). Bonn: Bundesamt für Naturschutz.

    Google Scholar 

  • Carpenter, S. R., DeFries, R., Dietz, T., Mooney, H. A., Polasky, S., Reid, W. V., et al. (2006). Millennium ecosystem assessment: Research needs. Science, 314, 257–258.

    CAS  Google Scholar 

  • Costanza, R., Fisher, B., Mulder, K., Liu, S., & Christopher, T. (2007). Biodiversity and ecosystem services: A multi-scale empirical study of the relationship between species richness and net primary production. Ecological Economics, 61, 478–491.

    Google Scholar 

  • Dengler, J. (2008). Pitfalls in small-scale species–area sampling and analysis. Folia Geobotanica, 43, 269–287.

    Google Scholar 

  • Dengler, J. (2009a). Which function describes the species–area relationship best?—A review and empirical evaluation. Journal of Biogeography, 36, 728–744.

    Google Scholar 

  • Dengler, J. (2009b). A flexible multi-scale approach for standardised recording of plant species richness patterns. Ecological Indicators, 9, 1169–1178.

    Google Scholar 

  • Dengler, J., & Oldeland, J. (2010). Effects of sampling protocol on the shapes of species richness curves. Journal of Biogeography, 37, 1698–1705.

    Google Scholar 

  • Dengler, J., Löbel, S., & Dolnik, C. (2009). Species constancy depends on plot size—a problem for vegetation classification and how it can be solved. Journal of Vegetation Science, 20, 754–766.

    Google Scholar 

  • Dengler, J., Jansen, F., Glöckler, F., Peet, R. K., De Cáceres, M., Chytrý, M., et al. (2011). The Global Index of Vegetation-Plot Databases (GIVD): A new resource for vegetation science. Journal of Vegetation Science, 22. doi:10.1111/j.1654-1103.2011.01265.x.

    Google Scholar 

  • Dierschke, H. (1994). Pflanzensoziologie—Grundlagen und Methoden. Stuttgart: Ulmer.

    Google Scholar 

  • Dobson, A., Lodge, D., Alder, J., Cumming, G. S., Keymer, J., McGlade, J., et al. (2006). Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology, 87, 1915–1924.

    Google Scholar 

  • Dolnik, C. (2003). Artenzahl-Areal-Beziehungen von Wald- und Offenlandgesellschaften—Ein Beitrag zur Erfassung der botanischen Artenvielfalt unter besonderer Berücksichtigung der Flechten und Moose am Beispiel des Nationalparks Kurischen Nehrung (Russland). Mitteilungen der Arbeitsgemeinschaft Geobotanik in Schleswig-Holstein und Hamburg, 62, 1–183.

    Google Scholar 

  • Duro, D., Coops, N. C., Wulder, M. A., & Han, T. (2007). Development of a large area biodiversity monitoring system driven by remote sensing. Progress in Physical Geography, 31, 235–260.

    Google Scholar 

  • Falk, T. (2008). Communal farmers’ natural resource use and biodiversity preservation—A new institutional economic analysis from case studies in Namibia and South Africa. Göttingen: Cuvillier.

    Google Scholar 

  • FAO (Ed.) (1990). Guidelines for soil description (3rd ed.). Rome: FAO.

    Google Scholar 

  • FAO (Ed.) (2006). Guidelines for soil description (4th ed.). Rome: FAO.

    Google Scholar 

  • Field, R., Hawkins, B. A., Cornell, H. V., Currie, D. J., Diniz-Filho, A. F., Guégan, J.-F., et al. (2009). Spatial species-richness gradients across scales: A meta-analysis. Journal of Biogeography, 36, 132–147.

    Google Scholar 

  • Fischer, M., Kalko, E. K. V., Linsenmair, K. E., Pfeiffer, S., Prati, D., Schulze, E.-D., et al. (2010). Exploratories for large-scale and long-term functional biodiversity research. In F. Müller, C. Baessler, H. Schubert, & S. Klotz (Eds.), Long-term ecological research—between theory and application (pp. 429–443). Berlin: Springer.

    Google Scholar 

  • Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405, 220–227.

    CAS  Google Scholar 

  • Gaston, K. J., & Spicer, J. I. (2005). Biodiversity: An introduction (2nd ed., p. 192). Malden, MA: Blackwell.

    Google Scholar 

  • Giere, P., & Zeller, U. (2005). Small mammal diversity and reproduction along a transect in Namibia (BIOTA S 07). In B. Huber, J. Sinclair, & K. H. Lampe (Eds.), African biodiversity: Molecules, organisms, ecosystems (pp. 305–313). Berlin: Springer.

    Google Scholar 

  • Goetze, D., Karlowski, U., Tockner, K., Watve, A., Riede, K., & Porembski, S. (2008). Spatial and temporal dimensions of biodiversity dynamics. In W. Barthlott, K. E. Linsenmaier, & S. Porembski (Eds.), Biodiversity: Structure and function. In UNESCO (Ed.), Encyclopedia of Life Support Systems (EOLSS) (pp. 166–208). Oxford EOLSS.

  • Grainger, A. (2009). Towards a new global forest science. International Forestry Review, 11, 126–133.

    Google Scholar 

  • Haarmeyer, D. H., Luther-Mosebach, J., Dengler, J., Schmiedel, U., Finckh, M., Berger, K., et al. (2010). The BIOTA Observatories. In N. Jürgens, D. H. Haarmeyer, J. Luther-Mosebach, J. Dengler, M. Finckh, & U. Schmiedel (Eds.), Biodiversity in southern Africa. Volume 1: Patterns at local scale—the BIOTA Observatories (pp. 6–801). Göttingen: Hess.

    Google Scholar 

  • Hahn-Hadjali, K., Schmidt, M., & Thiombiano, A. (2006). Phytodiversity dynamics in pastured and protected West African savannas. In S. A. Ghazanfar & H. J. Beentje (Eds.), Taxonomy and ecology of African Plants: Their conservation and sustainable use—Proceedings of the 17th AETFAT Congress Addis Ababa 21.-26.09.2003 (pp. 351–359). Kew: Royal Botanic Gardens.

    Google Scholar 

  • Henschel, J. R., Grohmann, C., Siteketa, V., & Linsenmair, K. E. (2010). Monitoring tenebrionid beetle biodiversity in Namibia. African Study Monographs, Supplementary Issue, 40, 117–128.

    Google Scholar 

  • Hereford, R., Webb, R. H., & Longpre, C. I. (2006). Precipitation history and ecosystem response to multidecadal precipitation variability in the Mojave Desert region, 1893–2001. Journal of Arid Environments, 67, 13–34.

    Google Scholar 

  • Heywood, V. H., & Watson, R. T. (Eds.) (1995). Global biodiversity assessment (1140 pp.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hintermann, U., Weber, D., & Zangger, A. (2000). Biodiversity monitoring in Switzerland. Schriftenreihe für Lanschaftspflege und Naturschutz, 62, 47–58.

    Google Scholar 

  • Hoffmann, A., & Zeller, U. (2005). Influence of variations in land use intensity on species diversity and abundance of small mammals in the Nama Karoo, Namibia. Belgian Journal of Zoology, 135, 91–96.

    Google Scholar 

  • Hoffmann-Kroll, R., Benzler, A., Schäfer, D., & Seibel, S. (2000). Setting up national biodiversity monitoring for nature conservation in Germany—the Ecological Area Sampling (EAS). Schriftenreihe für Lanschaftspflege und Naturschutz, 62, 79–94.

    Google Scholar 

  • Hüttich, C., Gessner, U., Herold, M., Strohbach, B. J., Schmidt, M., Keil, M., et al. (2009). On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: A case study in the Kalahari of NE Namibia. Remote Sensing, 1, 620–643.

    Google Scholar 

  • IUSS Working Group WRB (2006). World reference base for soil resources 2006: A framework for international classification, correlation and communication. World Soil Resources Reports, 103. Rome: FAO.

    Google Scholar 

  • Jansen, F., & Dengler, J. (2010). Plant names in vegetation databases—a neglected source of bias. Journal of Vegetation Science, 21, 1179–1186.

    Google Scholar 

  • Jürgens, N. (1998). Biodiversity monitoring transect analysis. In W. Barthlott & M. Gutmann (Eds.), Biodiversitätsforschung in Deutschland. Potentiale und Perspektiven (pp. 1–73). Bad Neuenahr-Ahrweiler.

  • Jürgens, N. (2004). BIOLOG—Africa. Research towards sustainable use and conservation of biodiversity in Africa. Introduction. In E. Beck, W. G. Berendsohn, M. Boutros, M. Denich, K. Henle, N. Jürgens, et al. (Eds.), Sustainable use and conservation of biological diversity—A challenge for society. Proceedings of the International Symposium Berlin, 1–4 December 2003 (pp. 130–131). Berlin: Federal Ministry of Education and Research.

    Google Scholar 

  • Jürgens, N. (2006). Recent change of flora and vegetation in Namibia—A brief review of dynamics, drivers and scientific approaches. In H. Leser (Ed.), The changing culture and Nature of Namibia: Case studies. The Sixth Namibia Workshop Basel 2005. In Honour of Dr. h. c. Carl Schlettwein (1925–2005) (pp. 91–108). Basel: Basler Afrika Bibliographien.

    Google Scholar 

  • Kim, E.-S. (2006). Development, potentials, and challenges of the International Long-Term Ecological Research (ILTER) Network. Ecological Research, 21, 788–793.

    Google Scholar 

  • Koulibaly, A., Goetze, D., Traoré, D., & Porembski, S. (2006). Protected versus exploited savanna: Characteristics of the Sudanian vegetation in Ivory Coast. Candollea, 61, 425–452.

    Google Scholar 

  • Krug, C. B., Esler, K. J., Hoffman, M. T., Henschel, J., Schmiedel, U., & Jürgens, N. (2006). North–South cooperation through BIOTA: An interdisciplinary monitoring programme in arid and semi-arid southern Africa. South African Journal of Science, 102, 187–190.

    Google Scholar 

  • Lájer, K. (2007). Statistical tests as inappropriate tools for data analysis performed on non-random samples of plant communities. Folia Geobotanica, 42, 115–122.

    Google Scholar 

  • Lecointre, G., & Le Guyader, H. (2006). Biosystematik—Alle Organismen im Überblick. Berlin: Springer.

    Google Scholar 

  • Loreau, M., & Olivieri, I. (1999). Diversitas: An international programme of biodiversity science. Trends in Ecology and Evolution, 14, 2–3.

    Google Scholar 

  • Mace, G. M., Cramer, W., Díaz, S., Faith, D. P., Larigauderie, A., Le Prestre, P., et al. (2010). Biodiversity targets after 2010. Current Opinion in Environmental Sustainability, 2, 3–8.

    Google Scholar 

  • Malhi, Y., Phillips, O. L., Lloyd, J., Baker, T. R., Wright, J., Almeida, S., et al. (2002). An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 13, 439–450.

    Google Scholar 

  • Mayer, C., Soka, G., & Picker, M. (2006). The importance of monkey beetle (Scarabaeidae: Hopliini) pollination for Aizoaceae and Asteraceae in grazed and ungrazed areas at Paulshoek, Succulent Karoo. Journal of Insect Conservation, 10, 323–333.

    Google Scholar 

  • McClean, C. J., Doswald, N., Küper, W., Sommer, J. H., Barnard, P., & Lovett, J. C. (2006). Potential impacts of climate change on sub-Saharan African plant priority area selection. Diversity and Distribution, 12, 645–655.

    Google Scholar 

  • Medinski, T. V., Mills, A. J., Esler, K. J., Schmiedel, U., & Jürgens, N. (2010). Do soil properties constrain species richness? Insights from boundary line analysis across several biomes in south western Africa. Journal of Arid Environments, 74, 1052–1060.

    Google Scholar 

  • Mills, A. J., Fey, M. V., Gröngröft, A., Petersen, A., & Medinski, T. V. (2006). Unravelling the effects of soil properties on water infiltration: Segmented quantile regression on a large data set from arid south-west Africa. Australian Journal of Soil Research, 44, 783–797.

    Google Scholar 

  • Muche, G., & Finckh, M. (2009). BIOTA Base short manual. Biocentre Klein Flottbek, University of Hamburg, Hamburg. http://www.biota-africa.org/downloads/biotabase/BIOTABaseManual.pdf. Accessed 26 July 2010.

  • Muche, G., Hillmann, T., Suwald, A., & Jürgens, N. (2010). Data access and availability: BIOTA data facility. In U. Schmiedel & N. Jürgens (Eds.), Biodiversity in southern Africa 2: Patterns and processes at regional scale (pp. 337–342). Göttingen & Windhoek: Hess.

    Google Scholar 

  • Musil, C. F., van Heerden, P. D. R., Cilliers, C. D., & Schmiedel, U. (2009). Mild experimental climate warming induces metabolic impairment and massive mortalities in southern African quartz field succulents. Environmental and Experimental Botany, 66, 79–87.

    Google Scholar 

  • Mutke, J., & Barthlott, W. (2005). Patterns of vascular plant diversity at continental to global scales. In I. Friis & H. Balslev (Eds.), Plant diversity and complexity patterns—local, regional and global dimensions—Proceedings of an international symposium held at the Royal Danish Academy of Sciences and Letters in Copenhagen, Denmark, 25–28 May, 2003 (pp. 521–537). Biologiske Skrifter, 55. Copenhagen: Reitzels.

    Google Scholar 

  • Noss, R. F. (1990). Indicators for monitoring biodiversity: A hierarchical approach. Conservation Biology, 4, 355–364.

    Google Scholar 

  • O’Connor, T. G., & Roux, P. W. (1995). Vegetation changes (1947–1971) in a semi-arid, grassy dwarf shrubland in the Karoo, South Africa: Influence of rainfall variability and grazing by sheep. Journal of Applied Ecology, 29, 247–260.

    Google Scholar 

  • Oldeland, J., Wesuls, D., Rocchini, D., Schmidt, M., & Jürgens, N. (2010). Does using species abundance data improve estimates of species diversity from remotely sensed spectral heterogeneity? Ecological Indicators, 10, 390–396.

    Google Scholar 

  • Palomares, A., & Ramirez, V. (2003). Thresholds of the divisor methods. Numerical Algorithms, 34, 405–415.

    Google Scholar 

  • Pauli, H., Gottfried, M., Hohenwallner, D., Reiter, K., Casale, R., & Grabherr, G. (Eds.) (2004). The GLORIA Field Manual—Multi-Summit Approach. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Pauli, H., Gottfried, M., Klettner, C., Friedmann, B., Laimer, S., & Grabherr, G. (Eds.) (2009). Amendment to the 4th-GLORIA Field Manual. Draft, July 2009. Vienna: University of Vienna & Austrian Academy of Sciences. http://www.gloria.ac.at/downloads/AMENDMENTS_GLORIA_Manual__DRAFT_2009-07_f.pdf. Accessed 26 July 2010.

  • Peet, R. K., Wentworth, T. R., & White, P. S. (1998). A flexible, multipurpose method for recording vegetation composition and structure. Castanea, 63, 262–274.

    Google Scholar 

  • Pereira, H., & Cooper, H. D. (2006). Towards the global monitoring of biodiversity change. Trends in Ecology and Evolution, 21, 123–129.

    Google Scholar 

  • Peters, J. (2010). Plant diversity patterns at different spatial scales in a semi-arid savanna ecosystem in central Namibia. Diplom thesis in Landscape Ecology & Nature Conservation, University of Greifswald. Also available from: http://www.biologie.uni-hamburg.de/bzf/syst/Diplom_thesis_Jan_Peters_2009.pdf.

  • Petersen, A. (2008). Pedodiversity of southern African drylands. Hamburger Bodenkundliche Arbeiten 62. Hamburg: Verein zur Förderung der Bodenkunde in Hamburg.

    Google Scholar 

  • Petersen, A., Gröngröft, A., & Miehlich, G. (2010). Methods to quantify the pedodiversity of 1 km2 areas—results from southern African drylands. Geoderma, 155, 140–146.

    Google Scholar 

  • Popp, A., Blaum, N., & Jeltsch, F. (2009a). Ecohydrological feedback mechanisms in arid rangelands: Simulating the impacts of topography and land use. Basic and Applied Ecology, 10, 319–329.

    Google Scholar 

  • Popp, A., Vogel, M., Blaum, N., & Jeltsch, F. (2009b). Scaling up ecohydrological processes: Role of surface water flow in water-limited landscapes. Journal of Geophysical Research—Biogeoscience, 114, Article G04013. doi:10.1029/2008JG000910.

    Google Scholar 

  • Pröpper, M. (2009). Culture and biodiversity in central Kavango, Namibia (p. 440). Berlin: Reimer.

    Google Scholar 

  • Pufal, G., Mayer, C., Porembski, S., & Jürgens, N. (2008). Factors affecting fruit set in Aizoaceae species of species of the Succulent Karoo. Basic and Applied Ecology, 9, 401–409.

    Google Scholar 

  • Reineking, B., Veste, M., Wissel, C., & Huth, A. (2006). Environmental variability and allocation trade-offs maintain species diversity in a process-based model of succulent plant communities. Ecological Modelling, 199, 486–504.

    Google Scholar 

  • Richards, J. A., & Xiuping, J. (2006). Remote sensing digital image analysis: An introduction (4th ed.). Berlin: Springer.

    Google Scholar 

  • Roleček, J., Chytrý, M., Hájek, M., Lvončík, S., & Tichý, L. (2007). Sampling design in large-scale vegetation studies: Do not sacrifice ecological thinking to statistical purism! Folia Geobotanica, 42, 199–208.

    Google Scholar 

  • Ruxton, G. D., & Colegrave, N. (2006). Experimental design for the life sciences (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Sala, O. E., Chapin, F. S. III, Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.

    CAS  Google Scholar 

  • Schmidt, M., Agonyissa, D., Ouédraogo, A., Hahn-Hadjali, K., Thiombiano, A., Koulibaly, A., et al. (2010). Changes in plant species composition following a climatic gradient in West Africa. In X. van der Burgt, J. van der Maesen, J.-M. Onana (Eds.), Systematics and conservation of African Plants. Proceedings of the 18th AETFAT Congress, Yaoundé, Cameroon (pp. 823–828). Kew: Royal Botanical Gardens.

    Google Scholar 

  • Schmiedel, U., & Jürgens, N. (2005). Biodiversity Observatories. A new standardised monitoring tool for biodiversity studies. Basic Applied Dryland Research, 1, 87–91.

    Google Scholar 

  • Schmiedel, U., Dengler, J., Luther-Mosebach, J., Gröngröft, A., Muche, G., Petersen, A., et al. (2010a). Patterns and dynamics of vascular plant diversity along the BIOTA transects in southern Africa. In U. Schmiedel & N. Jürgens (Eds.), Biodiversity in southern Africa. Volume 2: Patterns and processes at regional scale (pp. 118–135). Göttingen: Hess.

    Google Scholar 

  • Schmiedel, U., Mtuleni, V. S., Christiaan, R. A., Isaacks, R. S., Kotze, D., Lot, M. J., et al. (2010b). The BIOTA para-ecologist programme towards capacity development and knowledge exchange. In U. Schmiedel & N. Jürgens (Eds.), Biodiversity in southern Africa. Volume 2: Patterns and processes at regional scale (pp. 319–325). Göttingen: Hess.

    Google Scholar 

  • Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., & Broderson, W. D. (2002). Field book for describing and sampling soils. Version 2.0. Lincoln (NE): USDA Natural Resources Conservation Service, National Soil Survey Center.

    Google Scholar 

  • Scholes, R. J., Mace, G. M., Turner, W., Geller, G. N., Jürgens, N., Larigaudrie, A., et al. (2008). Toward a global biodiversity observing system. Science, 321, 1044–1045.

    CAS  Google Scholar 

  • Shmida, A. (1984). Whittaker’s plant diversity sampling method. Israel Journal of Botany, 33, 41–46.

    Google Scholar 

  • Sommer, J. H., Kreft, H., Kier, G., Jetz, W., Mutke, J., & Barthlott, W. (2010). Projected impacts of climate change on regional capacities for global plant species richness. Proceedings of the Royal Society B-Biological Science, 277, 2271–2280.

    Google Scholar 

  • Stohlgren, T. J. (2007). Measuring plant diversity—lessons from the field. Oxford: Oxford University Press.

    Google Scholar 

  • Stohlgren, T. J., Falkner, M. B., & Schell, L. D. (1995). A modified-Whittaker nested vegetation sampling method. Vegetatio, 117, 113–121.

    Google Scholar 

  • Storch, D., Marquet, P. A., & Brown, J. H. (Eds.) (2007). Scaling biodiversity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Strohbach, B. J. (2001). Vegetation survey of Namibia. Journal of the Scientific Society of Namibia, 49, 1–31.

    Google Scholar 

  • Taagepera, R., & Shugart, M. S. (1989). Seats and votes: The effects and determinants of electoral systems (p. 292). New Haven: Yale University Press.

    Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al. (2004). Extinction risk from climate change. Nature, 427, 145–148.

    CAS  Google Scholar 

  • Tietjen, B., Jeltsch, F., Zehe, E., Classen, N., Gröngröft, A., Schiffers, K., et al. (2010). Effects of climate change on the coupled dynamics of water and vegetation in drylands. Ecohydrology, 3, 226–237.

    Google Scholar 

  • Turner, W. R., & Tjørve, E. (2005). Scale-dependence in species–area relationships. Ecography, 28, 721–730.

    Google Scholar 

  • Turner, W. R., Brandon, K., Brooks, T. M., Costanza, R., da Fonseca, G. A. B., & Portela, R. (2007). Global conservation of biodiversity and ecosystem services. BioScience, 57, 868–873.

    Google Scholar 

  • Uhlmann, E., Görke, C., Petersen, A., & Oberwinkler, F. (2004). Comparison of AMF species diversity in winter-rainfall areas of South Africa and summer-rainfall areas of Namibia. Mycological Progress, 3, 267–274.

    Google Scholar 

  • van Vuuren, D. P., Sala, O. E., & Pereira, H. M. (2006). The future of vascular plant diversity under four global scenarios. Ecology and Society, 11(2), Article 25. http://www.ecologyandsociety.org/vol11/iss2/art25/.

  • Vohland, K., & Deckert, J. (2005). Termites (Isoptera) along a north–south transect in Namibia and South Africa. Entomologische Zeitschrift, 115, 109–115.

    Google Scholar 

  • Vohland, K., Uhlig, M., Marais, E., Hoffmann, A., & Zeller, U. (2005). Impact of different grazing systems on diversity, abundance and biomass of beetles (Coleoptera), a study from southern Namibia. Mitteilungen aus dem Museums für Naturkunde in Berlin, Zoologische Reihe, 81, 131–143.

    Google Scholar 

  • Vollan, B. (2009). Co-operation for common pool resources: An experimental perspective. München: Hut.

    Google Scholar 

  • Vollan, B., Prediger, S., & Frölich, M. (2009). The influence of collective property rights on grazing management in a semi-arid region. http://www.escholarship.org/uc/item/8j9521t1. Accessed 10 April 2010.

  • Walter, H., & Breckle, S.-W. (1983). Ökologie der Erde—Band 1: Ökologische Grundlagen in globaler Sicht. Stuttgart: Fischer.

    Google Scholar 

  • Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385–397.

    Google Scholar 

  • Wildi, O. (1986). Analyse vegetationskundlicher Daten—Theorie und Einsatz statistischer Methoden. Veröffentlichung des Geobotanischen Institutes der Eidgenössischen Technischen Hochschule, Stiftung Rübel in Zürich, 90. Zurich: Geobotanisches Institut, ETH.

    Google Scholar 

  • Wittig, R., König, K., Schmidt, M., & Szarzynski, J. (2007). A study of climate change and anthropogenic impacts in West Africa. Environmental Science and Pollution Research, 14, 182–189.

    Google Scholar 

  • World Resources Institute (Ed.) (2005). Ecosystem and human well-being: Biodiversity synthesis—A report of the Millennium Ecosystem Assessment. Washington, DC: World Resources Institute.

    Google Scholar 

  • Yoccoz, N. G., Nichols, J. D., & Boulinier, T. (2001). Monitoring of biological diversity in space and time. Trends in Ecology and Evolution, 16, 446–453.

    Google Scholar 

  • Zedda, L., & Rambold, G. (2004). Diversity change of soil-growing lichens along a climate gradient in Southern Africa. Bibliotheca Lichenologica, 88, 701–714.

    Google Scholar 

  • Zedda, L., Köhler, T., & Rambold, G. (2008). The project BIOTA Southern Africa lichens: Methods. http://biota-africa.uni-bayreuth.de/wiki/BIOTA_Lichens_meth. Accessed 24 March 2010.

  • Zedda, L., Gröngröft, A., Schultz, M., Petersen, A., Mills, A., & Rambold, G. (2011). Distribution patterns of soil lichens across different biomes of southern Africa. Journal of Arid Environments, 75, 215–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Schmiedel.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOCX 11.8 KB)

(DOCX 12.5 KB)

(XLSX 22.9 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jürgens, N., Schmiedel, U., Haarmeyer, D.H. et al. The BIOTA Biodiversity Observatories in Africa—a standardized framework for large-scale environmental monitoring. Environ Monit Assess 184, 655–678 (2012). https://doi.org/10.1007/s10661-011-1993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1993-y

Keywords

Navigation