Skip to main content
Log in

Integrated techniques to identify groundwater vulnerability to pollution in a highly industrialized terrain, Tamilnadu, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Investigation has been made to identify groundwater vulnerability to pollution by using geoelectric and hydrochemical investigations in an important industrial town Mettur located in Tamilnadu state of India. Schlumberger vertical electric soundings were carried out in 23 locations and groundwater samples collected from bore wells in the same locations. The resistivity value with <20 Ωm up to a depth of 36 m indicate contamination of groundwater in areas influenced by sewages from industries, domestic and agricultural practices in the central and southern part of the study area. The calculated specific conductance was noted higher than EC in central and southern part of the study area with low resistivity indicating the contaminated nature of groundwater. Concentrations of Ca, Na, Mg and K along with Cl, HCO3, SO4 and NO3 were higher in certain locations when compared with WHO and ISI standards. The facies concept demarcated four groups based on the nature of groundwater contamination. The trace elements Fe and Pb were higher in locations confined to industrial zones and Zn and Cu were within the prescribed limit in all the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd Alla, M. A. (2008). Integrated geophysical methods to delineate the contamination. Geophysical Research Abstracts, 10, EGU2008-A-02014.

    Google Scholar 

  • Alger, R. P. (1966). Interpretation of electric logsr in freshwater wells in unconsolidated formations. In: Transactions of Society of Professional Well Log Analysis, 7th Annual Logging Symposium, Okla, May 1966.

  • Ali Kaya, M., Ozurlan, G., & Sengul, E. (2007). Delineation of soil and groundwater contamination using geophysical methods at a waste disposal site in Çanakkale, Turkey. Environmental Monitoring and Assessment, 135, 441–446.

    Article  Google Scholar 

  • Al-Tarazi, E., El-Naqa, A., El-Waheidi, M., & Abu Rajab, J. (2006). Electrical geophysical and hydrogeological investigations of groundwater aquifers in Ruseifa municipal landfill, Jordanm. Environmental Geology, 50, 1095–1103.

    Article  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and waste water (19th ed.). Washington: American Public Health Association.

    Google Scholar 

  • Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of American Institute of Mineralogical and Metallurgical and Petroleum Engineers, 146, 54–62.

    Google Scholar 

  • Barker, R., Venkateswararao, T., & Thangarajan, M. (2001). Delineation of contaminant zone through electrical imaging techniques. Current Science, 81(3), 10.

    Google Scholar 

  • Belmonte Jimenez, S. I., Campos Enríquez, J. O., & Alatorre Zamora, M. O. (2005). Vulnerability to contamination of the Zaachila aquifer,Oaxaca, Mexico. Geofísica Internacional, 44(3), 283–300.

    Google Scholar 

  • Benson, R., Glaccum, R., & Noel, M. (1983). Geophysical Techniques for Sensing Buried Waste and Waste Migration. Journal of Environmental Monitoring System Laboratory Officers Research and Development, US Environmental Protection Agency, Las Vegas, NV, Rep. 68–03–3050, 114.

  • Bobachev, C. (2002). IPI2Win: Windows software for an automatic interpretation of resistivity sounding data, Ph.D., Moscow State University.

  • De Ketelaere, D., Hotzl, H., Neukum, C., Civita, M., & Sappa, G. (2004). Hazard analysis and mapping. In F. Zwahlen (Ed.), Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report COST Action 620. European Commission, Directorate-General for Research, EUR 20912:86–105.

  • Dent, D. (2007). Environmental geophysics mapping salinity and water resources. International Journal of Applied Earth Observation and Geoinformation, 9, 130–136.

    Article  Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters-surface and groundwater environments, (p. 436, 3rd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Ebraheem, A. M., Senosy, M. M., & Dahab, K. A. (1996). Geoelectrical and hydrochemical studies for delineating groundwater contamination due to salt-water intrusion in the Northern part of the Nile Delta, Egypt. Ground water, 35(2), 216–222.

    Article  Google Scholar 

  • Elango, L., & Gnanasundar, D. (1999). Groundwater quality assessment of a coastal aquifer using geophysical techniques. Journal of Environmental Hydrology, 6, 21–33.

    Google Scholar 

  • El-Hussaini, A. H., Ibrahim, H. A., & Sebaq, A. S. (2003). Application of electrical resistivity and self-potential for groundwater exploration and contamination study in the area northwest of Assiut City, Egypt. Journal of King Saud University, 16, 31–61.

    Google Scholar 

  • Foster, S. S. D. (1988). Groundwater recharge and pollution vulnerability of British aquifers: A critical overview. Geological Society Special Publication, 130, London.

  • Freeze, A. R., & Cherry, J. A. (1979). Groundwater, (p. 604). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Frohlich, R. K., Urish, D. W., Fullerand, J., & Reilly, M. O. (1994). Use of geoelectric method in groundwater pollution surveys in a coastal environment. Journal of Applied Geophysics, 32, 139–154.

    Article  Google Scholar 

  • Goldscheider, N. (2005a). Fold structure and underground drainage pattern in the alpine karst system Hochifen-Gottesacker. Eclogae Geology Helv, 98, 1–17.

    Article  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water, (p. 2254, 3rd ed.). Jodhpur: Scientific.

    Google Scholar 

  • Hem, J. D. (1959). Geochemistry of water calculation and use of ion activity, (p. 17). USGS water supply, 1935 C.

  • Ibrahim, H. A., El-Hussaini, A. H., Ebraheem, A. M., & Ebraheem, M. O. (2008). Application of Surface Earth Resistivity (ER) and Self-Potential (SP) for ground water exploration and contamination in the area west of Assiut City Egypt. Bulletin of Faculty of Science, 27(2-F), 227–252. Assiut University, Assiut.

  • IPT (2005). India peoples tribunal on environment and human rights, Combat Law Publications (Pvt.) Ltd. for Indian People’s Tribunal at New Age Printing Press, (p. 53).

  • ISI (1983). Drinking water standard-substances or characteristic affecting the acceptability of water for domestic use. IS, 10500, 1–22.

    Google Scholar 

  • Jackson, P. D., Taylor Smith, D., & Stanford, P. N. (1978). Resistivity–porosity-particles shape relationships for marine sands. Geophysics, 43, 1250–1268.

    Article  Google Scholar 

  • Karlık, G., & Kaya, M. A. (2000). Investigation of groundwater contamination using electric and electromagnetic methods at an open waste-disposal site: a case study from Isparta, Turkey. Environmental Geology, 40(6), 725–731.

    Google Scholar 

  • Keller, G. V., & Fischkneechst, F. C. (1966). Electrical methods in geophysical prospecting. London: Pergamon.

    Google Scholar 

  • Koefoed, O. (1979). Geosounding principles, (p. 276). Amsterdam: Elsevier.

    Google Scholar 

  • Loop, C. M., & White, W. B. (2001). A conceptual model for DNAPL transport in karst ground water basins. Ground Water, 39(1), 119–127.

    Article  CAS  Google Scholar 

  • Mattas, C., Soulios, G., Panagopoulos, A., Voudouris, K., & Panoras, A. (2007). Hydrochemical characteristics of the Gallikos river water, prefecture of Kilikis, Greece. Journal of Global Nest, 9, 251–258.

    Google Scholar 

  • Mitsios, I. K., Golia, E. E., & Tsadilas, C. D. (2005). Heavy metal concentration in soils and irrigation water in Thessaly area, Central Greece. Communications in Soil Science and Plant Analysis, 36, 487–501.

    Article  CAS  Google Scholar 

  • Mooney, H. M., Orellana, E., Pickett, H., & Turnheim, L. (1966). A resistivity computation method for layered earth models. Geophysics, 31, 192–302.

    Article  Google Scholar 

  • Ojo, J. S., Olorunfemi, M. O., & Omosuyi, G. O. (2007). Geoelectric sounding to delineate shallow aquifers in the coastal plain sands of Okitipupa area, Southwestern Nigeria. Online Journal of Earth Sciences, 1(4), 170–179.

    Google Scholar 

  • Peligba, K. B., Biney, C. A., Antwi, L. A. (1991). Trace metal concentrations in boreholes water from the upper regions and the accra plains of Ghana. Water, Air and Soil Pollution, 59, 333–345.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1953). Graphic procedure in the geochemical interpretation of water analysis. American Geophysical Union Transaction, 25, 914–923.

    Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Shahul Hameed, A., & Srinivasamoorthy, K. (2009). Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environmental Monitoring and Assessment, 168, 63–90.

    Article  Google Scholar 

  • Reimann, C., & De Caritat, P. (1998). Chemical elements in the environment. Factsheets for the geochemist and environmental scientist, (p. 398). Berlin: Springer.

    Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington, DC: USDA.

    Google Scholar 

  • Samsudin, A. R., Haryono, A., Hamzah, U., & Rafek, A. G. (2008). Salinity mapping of coastal groundwater aquifers using hydrogeochemical and geophysical methods: a case study from north Kelantan, Malaysia. Environmental Geology, 55, 1737–1743. doi:10.1007/s00254-007-1124-9.

    Article  CAS  Google Scholar 

  • Saxena, V. K. (2004). Geothermal resources of India, (pp. 48–70). New Delhi: Allied.

    Google Scholar 

  • Scoullos, M. J., Sakellari, A., Giannopolulou, K., Paraskevopoulou, V., & Dassenakis, M. (2007). Dissolved and particulate trace metal levels in the Saronikos Gulf, Greece, in 2004. The impact of the primary Wastewater Treatment Plant of Psittalia. Desalination, 210, 98–109.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Singh, V. K., Mohan, D., & Sinha, S. (2005). Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Anal Chimica Acta, 550, 82–91.

    Article  CAS  Google Scholar 

  • Sorensen, K. I., Auken, E., Christensen, N. B., & Pellerin, L. (2005). An integrated approach for hydrogeophysical investigations: New technologies and a case history: New technologies and a case history in near-surface geophysics. In D. K. Butler (Ed.), Society of Exploration Geophysicists Investigations in Geophysics No. 13, (pp. 585–606). Society of Exploration Geophysicists: Tulsa, OK.

  • Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., Vasanthavigar, M., John Peter, A., & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain—a case study from Mettur Taluk, Salem district, Tamilnadu, India. Journal of Earth System Sciences, 117(1), 1–10.

    Article  Google Scholar 

  • Srinivasamoorthy, K., Nanthakumar, C., Vasanthavigar, M., Vijayaraghavan, K., Rajivganthi, R., & Chidambaram, S. (2009). Groundwater quality assessment from a hard rock terrain, salem district of Tamilnadu, India. Arabian Journal of Geosciences. doi:10.1007/s12517-009-0076-7.

    Google Scholar 

  • Srinivasamoorthy, K., Vijayaraghavan, K., Vasanthavigar, M., Sarma, V. S., Chidambaram, S., Anandhan, P., et al. (2010). Assessment of groundwater quality with special emphasis on fluoride contamination in crystalline bed rock aquifers of Mettur region, Tamilnadu, India. Arabian Journal of Geosciences. doi:10.1007/s12517-010-0162-x.

    Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon river. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88, 9671–9688.

    Article  CAS  Google Scholar 

  • Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamilnadu, India. Environmental Geology, 47, 1099–1110.

    Article  CAS  Google Scholar 

  • Urish, D. W. (1983). The practical application of surface electrical resistivity to detection of groundwater pollution. Groundwater, 21(2), 1–10.

    Google Scholar 

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaraghavan, K., Rajiv ganthi, R., Chidambaram, S., Anandhan, P., et al. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring Assessment, 171, 595–609. doi:10.1007/s10661-009-1302-1.

    Article  CAS  Google Scholar 

  • Wen, X. H. , Wu, Y., & Wu, J. (2008). Hydrochemical characteristics of groundwater in the Zhangye Basin, Northwestern China. Environmental Geology, 55, 1713–1724. doi:10.1007/s00254-007-1122-y.

    Article  CAS  Google Scholar 

  • White, W. B. (2002). Karst hydrology: recent developments and open questions. Engineering geology, 65(2–3), 85–105.

    Article  Google Scholar 

  • WHO (2004). Guidelines for drinking water quality, vol. 1.Recommendations, (p. 130, 2nd edn). Geneva: WHO.

    Google Scholar 

  • Winsauer, W. O., & McCardell, W. M. (1952). Ionic double-layer conductivity in reservoir rock. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 198, 129–134.

    Google Scholar 

  • Worthington, P. F. (1993). Hydrogeophysical equivalence of water salinity, porosity, and matrix condition in arenaceous aquifers. Groundwater, 14(4), 224–232.

    Google Scholar 

  • Zohdy, A. A. R., Eaton, G. P., & Mabey, D. R. (1974). Appliction of surface geophysics to groundwater investigations. Techniques of water resources Investigations of the U.S. Geological Survey. Book 2, Chap. D1, U.S. Government Printing Office, Washington, D.C.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnaraj Srinivasamoorthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasamoorthy, K., Vijayaraghavan, K., Vasanthavigar, M. et al. Integrated techniques to identify groundwater vulnerability to pollution in a highly industrialized terrain, Tamilnadu, India. Environ Monit Assess 182, 47–60 (2011). https://doi.org/10.1007/s10661-010-1857-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1857-x

Keywords

Navigation