Skip to main content

Advertisement

Log in

Composition of heavy metals and airborne fibers in the indoor environment of a building during renovation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The renovation of a building will certainly affect the quality of air in the vicinity of where associated activities were undertaken, this includes the quality of air inside the building. Indoor air pollutants such as particulate matter, heavy metals, and fine fibers are likely to be emitted during renovation work. This study was conducted to determine the concentration of heavy metals, asbestos and suspended particulates in the Biology Building, at the Universiti Kebangsaan, Malaysia (UKM). Renovation activities were carried out widely in the laboratories which were located in this building. A low-volume sampler was used to collect suspended particulate matter of a diameter size less than 10 μm (PM10) and an air sampling pump, fitted with a cellulose ester membrane filter, were used for asbestos sampling. Dust was collected using a small brush and scope. The concentration of heavy metals was determined through the use of inductively coupled plasma–mass spectroscopy and the fibers were counted through a phase contrast microscope. The concentrations of PM10 recorded in the building during renovation action (ranging from 166 to 542 μg m − 3) were higher than the value set by the Department of Safety and Health for respirable dust (150 μg m − 3). Additionally, they were higher than the value of PM10 recorded in indoor environments from other studies. The composition of heavy metals in PM10 and indoor dust were found to be dominated by Zn and results also showed that the concentration of heavy metals in indoor dust and PM10 in this study was higher than levels recorded in other similar studies. The asbestos concentration was 0.0038 ± 0.0011 fibers/cc. This was lower than the value set by the Malaysian Department of Occupational, Safety and Health (DOSH) regulations of 0.1 fibers/cc, but higher than the background value usually recorded in indoor environments. This study strongly suggests that renovation issues need to be considered seriously by relevant stakeholders within the university in order to ensure that the associated risks toward humans and indoor environment are eliminated, or where this is not feasible, minimized as far as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ã-zkaynak, H., Xue, J., Spengler, J., Wallace, L., Pellizzari, E., & Jenkins, P. (1996). Personal exposure to airborne particles and metals: Results from the particle team study in Riverside, California. Journal of Exposure Analysis and Environmental Epidemiology, 6, 57–78.

    Google Scholar 

  • Al-Rajhi, M. A., Seaward, M. R. D., & Al-Aamer, A. S. (1996). Metal levels in indoor and outdoor dust in Riyadh, Saudi Arabia. Environment International, 22, 315–324. doi:10.1016/0160-4120(96)00017-7.

    Article  CAS  Google Scholar 

  • Bernstein, J. A., Alexis, N., Bacchus, H., Bernstein, I. L., Fritz, P., Horner, E., et al. (2008). The health effects of nonindustrial indoor air pollution. Journal of Allergy and Clinical Immunology, 121, 585–591. doi:10.1016/j.jaci.2007.10.045.

    Article  CAS  Google Scholar 

  • Bogovski, S., Lang, I., Rjazanov, V., Muzyka, V., Tuulik, V., & Vitak, A. (2007). Assessment of potential hazards during the process of house building in Estonia. International Journal of Environmental Health Research, 17, 105–112. doi:10.1080/09603120701219238.

    Article  CAS  Google Scholar 

  • Braniš, M., Řezàčovà, P., & Domasovà, M. (2005). The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2.5, and PM1 in a classroom. Environmental Research, 99, 143–149. doi:10.1016/j.envres.2004.12.001.

    Article  Google Scholar 

  • Brown, S. K. (1987). Asbestos exposure during renovation and demolition of asbestos–cement clad buildings. American Industrial Hygiene Association Journal, 48, 478–486. doi:10.1080/15298668791385075.

    CAS  Google Scholar 

  • Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. Lancet, 360, 1233–1242. doi:10.1016/S0140-6736(02)11274-8.

    Article  CAS  Google Scholar 

  • Chao, C. Y., & Wong, K. K. (2002). Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition. Atmospheric Environment, 36, 265–277. doi:10.1016/S1352-2310(01)00411-3.

    Article  CAS  Google Scholar 

  • Chattopadhyay, G., Lin, K. C. P., & Feitz, A. J. (2003). Household dust metal levels in the Sydney metropolitan area. Environmental Research, 93, 301–307. doi:10.1016/S0013-9351(03)00058-6.

    Article  CAS  Google Scholar 

  • Corn, M., Crump, K., Farrar, D. B., Lee, R. J., & McFee, D. R. (1991). Airborne concentrations of asbestos in 71 school buildings. Regulatory Toxicology and Pharmacology, 13, 99–114. doi:10.1016/0273-2300(91)90044-V.

    Article  CAS  Google Scholar 

  • Deng, Q. H., Shi, B. B., Li, J. D., & Lu, C. (2009). Chemical composition and source apportionment of particulate matter (PM10) in university classrooms. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology,) 40, 322–328.

    CAS  Google Scholar 

  • Draper, M. H., & Dufus, J. H. (1997). General overwiew of scientific presentation. In: J. H. Dufus (Ed.), Carcinogenicity of inorganic substances (pp. 6–18). Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Dufault, R., Abelquist, E., Crooks, S., Demers, D., DiBerardinis, L., Franklin, T., et al. (2000). Reducing environmental risk associated with laboratory decommissioning and property transfer. Environmental Health Perspectives, 108, 1015–1022.

    Article  CAS  Google Scholar 

  • Edimansyah, B. A., Rusli, B. N., Naing, L., Azwan, B. A., & Aziah, B. D. (2009). Indoor air quality in an automotive assembly plant in Selangor, Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health, 40, 187–192.

    CAS  Google Scholar 

  • Ekmekcioglu, D., & Keskin, S. S. (2007). Characterization of indoor air particulate matter in selected elementary schools in Istanbul, Turkey. Indoor and Built Environment, 16, 169–176. doi:10.1177/1420326X07076777.

    Article  CAS  Google Scholar 

  • El-Hougeiri, N., & El Fadel, M. (2004). Correlation of indoor–outdoor air quality in urban areas. Indoor and Built Environment, 13, 421–431. doi:10.1177/1420326X04049344.

    Article  CAS  Google Scholar 

  • Farfel, M. R., Orlova, A. O., Lees, P. S. J., Rohde, C., Ashley, P. J., & Chisolm, J. J. Jr. (2003). A study of urban housing demolitions as sources of lead in ambient dust: demolition practices and exterior dust fall. Environmental Health Perspectives, 111, 1228–1234.

    Article  CAS  Google Scholar 

  • Gemenetzis, P., Moussas, P., Arditsoglou, A., & Samara, C. (2006). Mass concentration and elemental composition of indoor PM2.5 and PM10 in University rooms in Thessaloniki, northern Greece. Atmospheric Environment, 40, 3195–3206. doi:10.1016/j.atmosenv.2006.01.049.

    Article  CAS  Google Scholar 

  • Godish, T. (2000). Indoor environmental quality. Florida: CRC.

    Book  Google Scholar 

  • Grassian, V. H. (2009). New directions: nanodust—a source of metals in the atmospheric environment? Atmospheric Environment, 43, 4666–4667. doi:10.1016/j.atmosenv.2009.06.032.

    Article  CAS  Google Scholar 

  • Hameed, A. A. A., Yasser, I. H., & Khoder, I. M. (2004). Indoor air quality during renovation actions: a case study. Journal of Environmental Monitoring, 6, 740–744. doi:10.1039/b402995j.

    Article  Google Scholar 

  • Hasegawa, A., Schleibinger, H., Nong, G., & Lusztyk, E. (2009). Effects of renovation work on air quality and occupants health in university buildings. Clean-Soil, Air, Water, 37, 475–480. doi:10.1002/clen.200800215.

    Article  CAS  Google Scholar 

  • Janssen, N. A. H., Hoek, G., Harssema, H., & Brunekreef, B. (1997). Childhood exposure to PM10: Relation between personal, classroom, and outdoor concentrations. Occupational and Environmental Medicine, 54, 888–894.

    Article  CAS  Google Scholar 

  • Janssen, N. A. H., Hoek, G., Brunekreef, B., & Harssema, H. (1999). Mass concentration and elemental composition of PM10 in classrooms. Occupational and Environmental Medicine, 56, 482–487.

    Article  CAS  Google Scholar 

  • Jones, A. P. (1999). Indoor air quality and health. Atmospheric Environment, 33, 4535–4564. doi:10.1016/S1352-2310(99)00272-1.

    Article  CAS  Google Scholar 

  • Kakkar, P., & Jaffery, F. N. (2005). Biological markers for metal toxicity. Environmental Toxicology and Pharmacology, 19, 335–349. doi:10.1016/j.etap.2004.09.003.

    Article  CAS  Google Scholar 

  • Kangur, M. (2007). Occupational exposure to asbestos during renovation of oil-shale fuelled power plants in Estonia. International journal of occupational safety and ergonomics: JOSE, 13, 341–346.

    Google Scholar 

  • KildesÃ, J., Vallarino, J., Spengler, J. D., Brightman, H. S., & Schneider, T. (1999). Dust build-up on surfaces in the indoor environment. Atmospheric Environment, 33, 699–707. doi:10.1016/S1352-2310(98)00258-1.

    Article  Google Scholar 

  • Klinmalee, A., Srimongkol, K., & Kim Oanh, N. T. (2009). Indoor air pollution levels in public buildings in Thailand and exposure assessment. Environmental Monitoring and Assessment, 156, 581–594. doi:10.1007/s10661-008-0507-z.

    Article  CAS  Google Scholar 

  • Kuehn, T. H. (1996). Construction/renovation influence on indoor air quality. ASHRAE Journal, 38.

  • Latif, M. T., Othman, M. R., Kim, C. L., Murayadi, S. A., & Sahaimi, K. N. A. (2009). Composition of household dust in semi-urban areas in Malaysia. Indoor and Built Environment, 18, 155–161. doi:10.1177/1420326X09103014.

    Article  CAS  Google Scholar 

  • Lawson, J. A., Dosman, J. A., Rennie, D. C., Beach, J., Newman, S., & Senthilselvan, A. (2009). Relationship between indoor environment and asthma and wheeze severity among rural children and adolescents. Journal of Agromedicine, 14, 277–285. doi:10.1080/10599240902772910.

    Article  Google Scholar 

  • Layton, D. W., & Beamer, P. I. (2009). Migration of contaminated soil and airborne particulates to indoor dust. Environmental Science and Technology, 43, 8199–8205. doi:10.1021/es9003735.

    Article  CAS  Google Scholar 

  • Lee, R. J., & Van Orden, D. R. (2008). Airborne asbestos in buildings. Regulatory Toxicology and Pharmacology, 50, 218–225. doi:10.1016/j.yrtph.2007.10.005.

    Article  CAS  Google Scholar 

  • Lee, S. C., Guo, H., Li, W. M., & Chan, L. Y. (2002). Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong. Atmospheric Environment, 36, 1929–1940. doi:10.1016/S1352-2310(02)00176-0.

    Article  CAS  Google Scholar 

  • Lee, R. J., Strohmeier, B. R., Bunker, K. L., & Van Orden, D. R. (2008). Naturally occurring asbestos—A recurring public policy challenge. Journal of Hazardous Materials, 153, 1–21. doi:10.1016/j.jhazmat.2007.11.079.

    Article  CAS  Google Scholar 

  • Lioy, P. J., Freeman, N. C. G., Wainman, T., Stern, A. H., Boesch, R., Howell, T., et al. (1992). Microenvironmental analysis of residential exposure to chromium-laden wastes in and around New Jersey homes. Risk Analysis, 12, 287–299. doi:10.1111/j.1539-6924.1992.tb00676.x.

    Article  Google Scholar 

  • Lippmann, M. (1990). Man-made mineral fibers (MMMF): Human exposures and health risk assessment. Toxicology and Industrial Health, 6, 225–246.

    CAS  Google Scholar 

  • Lyons, T. J., & Reynolds, M. H. (1996). Exposure to hazardous materials during renovation for existing structures. ASTM Special Technical Publication, 1258, 401–417.

    Google Scholar 

  • Oliver, L. C., & Shackleton, B. W. (1998). The indoor air we breathe. Public Health Reports, 113, 398–409.

    CAS  Google Scholar 

  • Pastuszka, J. S. (2009). Emission of airborne fibers from mechanically impacted asbestos–cement sheets and concentration of fibrous aerosol in the home environment in Upper Silesia, Poland. Journal of Hazardous Materials, 162, 1171–1177. doi:10.1016/j.jhazmat.2008.06.045.

    Article  CAS  Google Scholar 

  • Pastuszka, J. S. (2010). Emission of airborne fibers from mechanically impacted non-asbestos fiber-containing materials preliminary results. Archives of Environmental Protection, 36(2), 3–12.

    CAS  Google Scholar 

  • Ping, C. Z. (2008) Concentration of PM10 in Biology Building, Universiti Kebangsaan Malaysia. BSc. Thesis. Universiti Kebangsaan Malaysia

  • Rasmussen, P. E., Subramanian, K. S., & Jessiman, B. J. (2001). A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 267, 125–140. doi:10.1016/S0048-9697(00)00775-0.

    Article  CAS  Google Scholar 

  • Reynolds, S. J., Kreiger, R. A., Bohn, J. A., Fish, D., Marxhausen, T., & McJilton, C. (1994). Factors affecting airborne concentrations of asbestos in a commercial building. American Industrial Hygiene Association Journal, 55, 823–828.

    CAS  Google Scholar 

  • Sakai, K., NorbaÌ^ck, D., Mi, Y., Shibata, E., Kamijima, M., Yamada, T., et al. (2004). A comparison of indoor air pollutants in Japan and Sweden: formaldehyde, nitrogen dioxide, and chlorinated volatile organic compounds. Environmental Research, 94, 75–85. doi:10.1016/S0013-9351(03)00140-3.

    Article  CAS  Google Scholar 

  • Sauni, R., Oksa, P., Vattulainen, K., Uitti, J., Palmroos, P., & Roto, P. (2001). The effects of asthma on the quality of life and employment of construction workers. Occupational Medicine, 51, 163–167. doi:10.1093/occmed/51.3.163.

    Article  CAS  Google Scholar 

  • Sen, D., Wolfson, H. & Dilworth, M. (2002). Lead exposure in scaffolders during refurbishment construction activity—an observational study. Occupational Medicine, 52, 49–54. doi:10.1093/occmed/52.1.49.

    Article  CAS  Google Scholar 

  • Sohn, M. D., Apte, M. G., Sextro, R. G., & Lai, A. C. K. (2007). Predicting size-resolved particle behavior in multizone buildings. Atmospheric Environment, 41, 1473–1482. doi:10.1016/j.atmosenv.2006.10.010.

    Article  CAS  Google Scholar 

  • Sohn, J., Yang, W., Kim, J., Son, B., & Park, J. (2009). Erratum to “Indoor air quality investigation according to age of the school buildings in Korea” [J. Environ. Manage. 90 (2008) 348–354]. Journal of Environmental Management, 90, 1962–1962. doi:10.1016/j.jenvman.2008.12.003.

    Article  Google Scholar 

  • Tahir, N. M., Chee, P. S., & Jaafar, M. (2007). Determination of heavy metals content in soils and indoor dusts from nurseries in Dungun, Terengganu. Malaysian Journal of Analytical Sciences, 11, 280–286.

    Google Scholar 

  • Tong, S. T. Y. & Lam, K. C. (1998). Are nursery schools and kindergartens safe for our kids? The Hong Kong study. Science of The Total Environment, 216, 217–225. doi:10.1016/S0048-9697(98)00161-2.

    Article  CAS  Google Scholar 

  • Turner, W. A. (1998). Controlling ventilation during renovation. HPAC Heating, Piping, Air Conditioning, 70, 49–52.

    Google Scholar 

  • Vijayanand, C., Rajaguru, P., Kalaiselvi, K., Selvam, K. P., & Palanivel, M. (2008). Assessment of heavy metal contents in the ambient air of the Coimbatore city, Tamilnadu, India. Journal of Hazardous Materials, 160, 548–553. doi:10.1016/j.jhazmat.2008.03.071.

    Article  CAS  Google Scholar 

  • Wang, X., Bi, X., Sheng, G., & Fu, J. (2006). Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China. Science of the Total Environment, 366, 124–135. doi:0.1016/j.scitotenv.2005.09.004.

    Article  CAS  Google Scholar 

  • Yang, W., Sohn, J., Kim, J., Son, B., & Park, J. (2009). Indoor air quality investigation according to age of the school buildings in Korea. Journal of Environmental Management, 90, 348–354. doi:10.1016/j.jenvman.2007.10.003.

    Article  CAS  Google Scholar 

  • Yiin, L. M., Lu, S. E., Sannoh, S., Lim, B. S., & Rhoads, G. G. (2004). Evaluation of cleaning methods applied in home environments after renovation and remodeling activities. Environmental Research, 96, 156–162. doi:10.1016/j.envres.2004.01.007.

    Article  CAS  Google Scholar 

  • Young, J. M., Kelly, T. M., & Vance, L. (2008). Determination of size fractions and concentrations of airborne particulate matter generated from construction and demolition waste processing facilities. Air Quality Atmosphere and Health, 1, 91–100. doi:10.1007/s11869-008-0015-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Talib Latif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latif, M.T., Baharudin, N.H., Velayutham, P. et al. Composition of heavy metals and airborne fibers in the indoor environment of a building during renovation. Environ Monit Assess 181, 479–489 (2011). https://doi.org/10.1007/s10661-010-1843-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1843-3

Keywords

Navigation