Skip to main content

Advertisement

Log in

Analysis of spatio-temporal land cover changes for hydrological impact assessment within the Nyando River Basin of Kenya

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The spatio-temporal changes in the land cover states of the Nyando Basin were investigated for auxiliary hydrological impact assessment. The predominant land cover types whose conversions could influence the hydrological response of the region were selected. Six Landsat images for 1973, 1986, and 2000 were processed to discern the changes based on a methodology that employs a hybrid of supervised and unsupervised classification schemes. The accuracy of the classifications were assessed using reference datasets processed in a GIS with the help of ground-based information obtained through participatory mapping techniques. To assess the possible hydrological effect of the detected changes during storm events, a physically based lumped approach for infiltration loss estimation was employed within five selected sub-basins. The results obtained indicated that forests in the basin declined by 20% while agricultural fields expanded by 16% during the entire period of study. Apparent from the land cover conversion matrices was that the majority of the forest decline was a consequence of agricultural expansion. The model results revealed decreased infiltration amounts by between 6% and 15%. The headwater regions with the vast deforestation were noted to be more vulnerable to the land cover change effects. Despite the haphazard land use patterns and uncertainties related to poor data quality for environmental monitoring and assessment, the study exposed the vast degradation and hence the need for sustainable land use planning for enhanced catchment management purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andriesse, W., & Van der Pouw, B. J. A. (1985). Reconnaissance soil map of the lake basin development authority, Western Kenya (scale 1:250,000). Netherlands Soil Survey Institute/Kenya Soil Survey, Wageningen/Nairobi, The Netherlands/Kenya.

  • ASCE (1993). Criteria for evaluation of watershed models. Journal of Irrigation Drainage Engineering, 119(3), 429–442.

    Article  Google Scholar 

  • Baldyga, T. J., Miller, N. S., Driesse, L. K., & Gichaba, N. C. (2007). Assessing land cover change in Kenya’s Mau Forest region using remotely sensed data. African Journal of Ecology. doi:10.1111/j.1365-2028.2007.00806.x.

    Google Scholar 

  • Batjes, N. H., & Gicheru, P. (2004). Soils data derived from SOTER for studies of carbon stocks and change in Kenya (GEF-SOC project; version 1.0). Technical report No. 01, ISRIC—World Soil Information, Wagenigen, The Netherlands.

  • Burrough, P. A., & Mc Donnel, R. A. (1998). Principles of geographical information system. New York: Oxford University Press.

    Google Scholar 

  • Calder, I. R. (1993). Hydrologic Effects of Land-Use Change. In D. R. Maidment (Ed.), Handbook of hydrology (pp. 13.1–13.50). New York: McGraw-Hill.

    Google Scholar 

  • Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. New York: McGraw-Hill.

    Google Scholar 

  • Congalton, R. G., & Green, K. (1999). Assessing the accuracy of remotely sensed data. Boca Raton: CRC Press.

    Google Scholar 

  • Coppin, P., Jonckheere, I., Nackaerts, K., & Muys, B. (2004). Digital change detection methods in ecosystem monitoring: A review. International Journal of Remote Sensing. doi:10.1080/0143116031000101675.

    Google Scholar 

  • Di Gregorio, A., & Jansen, L. J. M. (1998). Land cover classification system (LCCS): Classification concepts and user manual (Vol. 157). Rome: Environment and Natural Resources Service (SDRN).

    Google Scholar 

  • ERDAS (2002). ERDAS field guide (6th ed.). Atlanta: ERDAS Inc.

    Google Scholar 

  • Foody, G. M. (2001). Monitoring the magnitude of land cover change on the southern limits of the Sahara. Photogrammetric Engineering and Remote Sensing, 67(7), 841–847.

    Google Scholar 

  • Fürst, J. (2004). GIS in hydrologie und wasserwirtschaft. Heidelberg: Herbert Wichmann.

    Google Scholar 

  • Githui, F., Mutua, F., & Bauwens, W. (2009). Estimating the impacts of land-cover change on runoff using the soil and water assessment tool (SWAT): Case study of Nzoia catchment, Kenya. Hydrological Sciences. doi:10.1623/hysj.54.5.899.

    Google Scholar 

  • Grayson, R., & Blöschl, G. (2000). Spatial patterns in catchment hydrology: Observations and modelling. UK: Cambridge University Press.

    Google Scholar 

  • Hayes, D. J., & Sader, S. A. (2001). Change detection techniques for monitoring forest clearing and regrowth in a tropical moist forest. Photogrammetric Engineering and Remote Sensing, 67(9), 1067–1075.

    Google Scholar 

  • Jensen, J. R. (2000). Remote sensing of the environment: An Earth resource perspective. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective (3rd ed.). Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2002). Change detection techniques. International Journal of Remote Sensing. doi:10.1080/0143116031000139863.

    Google Scholar 

  • Mutua, B. M., & Klik, A. (2007). Predicting daily streamflow in ungauged rural catchments: The case of Masinga catchment, Kenya. Hydrological Sciences. doi:10.1623/hysj.52.2.292.

    Google Scholar 

  • Olang, L. O. (2009). Analysis of land cover change impact on flood events using remote sensing, GIS and hydrological models. A case study of the Nyando River Basin in Kenya. PhD thesis, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria.

  • Olang, L. O., & Fürst, J. (2010). Effects of land cover change on flood peak discharges and runoff volumes: Model estimates for the Nyando River Basin, Kenya. Hydrological Processes. doi:10.1002/hyp.7821.

    Google Scholar 

  • Pellikka, P. K. E., Lötjönen, M., Siljander, M., & Lens, L. (2009). Airborne remote sensing of spatiotemporal change (1955–2004) in indigenous and exotic forest cover in the Taita Hills, Kenya. International Journal of Applied Earth Observations and Geoinformation. doi:10.1016/j.jag.2009.02.002.

    Google Scholar 

  • Rambaldi, G., Muchemi, J., Crawhall, N., & Monaci, L. (2007). Through the eyes of hunter-gatherer: Participatory 3D modelling among Ogiek indinegous peoples in Kenya. Information Development. doi:10.1177/0266666907078592.

    Google Scholar 

  • Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void filling interpolation methods for SRTM data. International Journal of Geographic Information Science. doi:10.1080/13658810601169899.

    Google Scholar 

  • Shrivastava, R. J., & Gebelein, J. L. (2007). Land cover classification and economic assessment of citrus groves using remote sensing. ISPRS Journal of Photogrametry and Remote Sensing. doi:10.1016/j.isprsjprs.2006.10.003.

    Google Scholar 

  • Singh, A. (1989). Review article. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing. doi:10.1080/01431168908903939.

    Google Scholar 

  • Soil Conservation Service (1986). National engineering handbook. Hydrology. USA: Soil Conservation Service, USDA, DC.

    Google Scholar 

  • Tao, C. V., & Hu, Y. (2001). A comprehensive study of the rational function model for photogrammetric processing. Photogrammetric Engineering & Remote Sensing, 67(12), 1347–1357.

    Google Scholar 

  • Tatem, A. J., Noor, A. M., & Hay, S. I. (2005). Assessing the accuracy of satellite derived global and national urban maps in Kenya. Remote Sensing of Environment. doi:10.1016/j.rse.2005.02.001.

    Google Scholar 

  • Tottrup, C. (2004). Improving tropical forest mapping using multi-date Landsat TM data and pre-classification image smoothing. International Journal of Remote Sensing. doi:10.1080/01431160310001598926.

    Google Scholar 

  • USACE (1994). Flood runoff analysis. Engineering manual no. 110-2-1417. Washington: US Army Corps of Engineers.

    Google Scholar 

  • Wedderburn-Bisshop, G., Walls, J., Senerath, U. G., & Stewart, A. J. (2002). A methodology for mapping change in woody landcover in Queensland from 1999 to 2001 using Landsat ETM+. In Proceedings of the 11th Australasian remote sensing and photogrammetry conference. Brisbane, Australia.

  • Yuan, D., Elvidge, C. D., & Lunetta, R. S. (1998). Survey of multispectral methods for land cover change analysis. In Remote sensing change detection: Environmental monitoring methods and applications. MI: Ann Arbor Press.

    Google Scholar 

  • Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land cover classification and change analysis of the twin cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Journal of Remote Sensing and Environment. doi:10.1016/j.rse.2005.08.006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Omondi Olang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olang, L.O., Kundu, P., Bauer, T. et al. Analysis of spatio-temporal land cover changes for hydrological impact assessment within the Nyando River Basin of Kenya. Environ Monit Assess 179, 389–401 (2011). https://doi.org/10.1007/s10661-010-1743-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1743-6

Keywords

Navigation