Skip to main content

Advertisement

Log in

Use of fish functional traits to associate in-stream suspended sediment transport metrics with biological impairment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Loss of ecological integrity due to excessive suspended sediment in rivers and streams is a major cause of water quality impairment in the USA. Current assessment protocols for development of sediment total maximum daily loads (TMDLs) lack a means to link temporally variable sediment transport rates with specific losses of ecological functions as loads increase. In order to accomplish this linkage assessment, a functional traits-based approach was used to correlate site occurrences of 17 fish species traits in three main groups (preferred rearing habitat, trophic feeding guild, and spawning behavior) with suspended sediment transport metrics. The sediment transport metrics included concentrations, durations, and dosages for a range of exceedance frequencies; and mean annual suspended sediment yields (SSY). In addition, this study in the Northwestern Great Plains Ecoregion examined trait relationships with three environmental gradients: channel stability, drainage area, and elevation. Potential stressor responses due to elevated suspended sediment concentration (SSC) levels were correlated with occurrences of five traits: preferred pool habitat; feeding generalists, omnivores, piscivores, and nest-building spawners; and development of ecologically based TMDL targets were demonstrated for specific SSC exceedance frequencies. In addition, reduced site occurrences for preferred pool habitat and nest-building spawners traits were associated with unstable channels and higher SSY. At an ecoregion scale, a functional traits assessment approach provided a means to quantify relations between biological impairment and episodically elevated levels of suspended sediment, supporting efforts to develop ecologically based sediment TMDLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, B. G. W., Van Den Brink, F. W. B. & Nienhuis, P. H (2004). Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: The transversal floodplain gradient. River Research & Applications, 20, 3–23.

    Article  Google Scholar 

  • Abrahams, M., & Kattenfeld, M. (1997). The role of turbidity as a constraint on predator-prey interactions in aquatic environments. Behavioral Ecology and Sociobiology, 40, 169–174.

    Article  Google Scholar 

  • Asmus, B., Magner, J. A., Vondracek, B., & Perry, J. (2009). Physical integrity: the missing link in biological monitoring and TMDLs. Environmental Monitoring & Assessment, 159, 443–463.

    Article  CAS  Google Scholar 

  • Austen, D. J., Bayley, P. B., & Menzel, B. W. (1994). Importance of the guild concept to fisheries research and management. Fisheries, 19(6), 12–20.

    Article  Google Scholar 

  • Bady, P., Doledec, S., Fesl, C., Gayraud, S., Bacchi, M., & Scholl, F. (2005). Use of invertebrate traits for the biomonitoring of European large rivers: The effects of sampling effort on genus richness and functional diversity. Freshwater Biology, 50, 159–173.

    Article  Google Scholar 

  • Barbour, M. T., Gerritsen, J., Synder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in wadable streams and rivers: Periphyton, Benthic Macroinvertebrates, and Fish, EPA 841-B-99–002. Washington: US Environmental Protection Agency.

    Google Scholar 

  • Berkman, H. E., & Rabeni, C. F. (1987). Effects of siltation on stream fish communities. Environmental Biology of Fishes, 18(4), 285–294.

    Article  Google Scholar 

  • Blanck, A., Tedesco, P. A., & Lamouroux, N. (2007). Relationships between life-history strategies of European freshwater fish species and their habitat preferences. Freshwater Biology, 52, 843–859.

    Article  Google Scholar 

  • Bonner, T. H., & Wilde, G. R. (2002). Effects of turbidity of prey consumption by prairie stream fishes. Transactions of the American Fisheries Society, 131, 1203–1208.

    Article  Google Scholar 

  • Bramblett, R. G., & Fausch, K. D. (1991). Variable fish communities and the index of biological integrity in a Western Great Plains river. Transactions of the American Fisheries Society, 120, 752–769.

    Article  Google Scholar 

  • Bramblett, R. G., Johnson, T. R., Zale, A. V., & Heggem, D. G. (2005). Development and evaluation of a fish assemblage index of biotic integrity for northwestern Great Plains streams. Transactions of the American Fisheries Society, 134, 624–640.

    Article  Google Scholar 

  • Bryce, S. A., Lomnicky, G. A., Kauffmann, P. R., McAllister, L. S., & Ernst, T. L. (2008). Development of biologically based sediment criteria in mountain streams of the western United States. North American Journal of Fisheries Management, 28, 1714–1724.

    Article  Google Scholar 

  • Coker, G. A., Portt, C. B., & Minns, C. K. (2001). Morphological and Ecological Characteristics of Canadian Freshwater Fishes. Canadian MS Report Fisheries and Aquatic Sciences, 2554, pp. iv + 89.

  • Cormier, S. M., Smith, M., Norton, S., & Neiheisel, T. (2000). Assessing ecological risk in watersheds: A case study of problem formation in the Big Darby watershed, Ohio, U.S.A. Environmental Toxicology and Chemistry, 19(4), 1082–1096.

    Article  CAS  Google Scholar 

  • D’Ambrosia, J. L., Williams, L. R., Witter, J. D., & Ward, A. (2009). Effects of geomorphology, habitat, and spatial location on fish assemblages in a watershed in Ohio, USA. Environmental Monitoring & Assessment, 148, 325–341.

    Article  Google Scholar 

  • DeRobertis, A., Ryer, C. H., Veloza, A., & Brodeur, R. D. (2003). Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Canadian Journal of Fisheries & Aquatic Sciences, 60, 1517–1526.

    Article  Google Scholar 

  • Doledec, S., Statzner, B., & Bournard, M. (1999). Species traits for future biomonitoring across ecoregions: Patterns along a human-impacted river. Freshwater Biology, 42, 737–758.

    Article  Google Scholar 

  • Etnier, D. A., & Starnes, W. C. (1993). The Fishes of Tennessee. Knoxville: University of Tennessee Press, p. 688.

    Google Scholar 

  • Fausch, K. D., & Bramblett, R. G. (1991). Disturbance and fish communities in intermittent tributaries of a Western Great Plains River. Copeia, 3, 659–673.

    Article  Google Scholar 

  • Fischer, J. R., & Paukert, C. P. (2008). Habitat relationships with fish assemblages in minimally disturbed Great Plains regions. Ecology of Freshwater Fish, 17, 597–609.

    Article  Google Scholar 

  • Flecker, A. S. (1992). Fish trophic guilds and structure of a tropical stream: weak direct vs. strong indirect effects. Ecology, 73(3), 927–940.

    Article  Google Scholar 

  • Frimpong, E. A., & Angermeier, P. L. (2009). Fish traits: A database of ecological and life history traits of freshwater fishes of the United States. Fisheries, 34(10), 487–495.

    Article  Google Scholar 

  • Goldstein, R. A., & Meador, M. R. (2005). Multilevel assessment of fish species traits to evaluate habitat degradation in streams of the upper Midwest. North American Journal of Fisheries Management, 25, 180–194.

    Article  Google Scholar 

  • Grossman, G. D., Freeman, M. C., Moyle, P. B., & Whitaker, J. O. (1985). Stochasticity and assemblage organization in an Indiana stream fish assemblage. American Naturalist, 126(2), 275–285.

    Article  Google Scholar 

  • Growns, I. (2004). A numerical classification of reproductive guilds of the freshwater fishes of south-eastern Australia and their application to river management. Fisheries Management and Ecology, 11, 369–377.

    Article  Google Scholar 

  • Halse, S. A., Scanlon, M. D., Cocking, J. S., Smith, M. J., & Kay, W. R. (2007). Factors affecting river health and its assessment over broad geographic ranges: The western Australian experience. Environmental Monitoring & Assessment, 134, 161–175.

    Article  CAS  Google Scholar 

  • Henley, W. E., Patterson, M. A., Neves, R. J., & Lemly, A. D. (2000). Effects of sedimentation and turbidity on lotic food webs: A concise review for natural resources managers. Reviews in Fisheries Science, 8(2), 125–139.

    Article  Google Scholar 

  • Hoagstrom, C. W., & Berry, C. R. (2008). Morphological diversity among fishes in a Great Plains river drainage. Hydrobiologia, 596, 367–386.

    Article  Google Scholar 

  • Hoagstrom, C. W., Wall, S. S., Duehr, J. P., & Berry, C. R. (2006). River size and fish assemblages in southwestern South Dakota. Great Plains Research, 16, 117–126.

    Google Scholar 

  • Holton, G. D. (2003). A Field Guide to Montana Fishes, Mont. Dept. Fish, Wildlife, and Parks, 95 p. http://fieldguide.mt.gov/detail_AFCNB04600.aspx. Accessed 18 February 2009.

  • Kaufmann, P. R., Faustini, J. M., Larsen, D. P., & Shirazi, M. A. (2008). A roughness-corrected index of relative bed stability for regional stream surveys. Geomorphology, 99, 150–170.

    Article  Google Scholar 

  • Kilgour, B. W., Dube, M. G., Hedley, K., Portt, C. B., & Munkittrick, K. R. (2007). Aquatic environmental effects guidance for environmental assessment practitioners. Environmental Monitoring & Assessment, 130, 423–436.

    Article  CAS  Google Scholar 

  • Koel, T. M., & Peterka, J. J. (2003). Stream fish communities and environmental correlates in the Red River of the North, Minnesota and North Dakota. Environmental Biology of Fishes, 67, 137–155.

    Article  Google Scholar 

  • Kral, J. G., & Berry, C. R. (2005). Fishes at randomly selected sites on wadable streams in South Dakota. Proceedings of the South Dakota Academy of Science, 84, 305–313.

    Google Scholar 

  • Lamouroux, N., Doledec, S., & Gayraud, S. (2004). Biological traits of stream macroinvertebrate communities: Effects of microhabitat, reach, and basin filters. Journal of the North American Benthological Society, 23(3), 449–466.

    Article  Google Scholar 

  • Lamouroux, N., Poff, N. L., & Angermeier, P. L. (2002). Intercontinental convergence of fish community traits along geomorphic and hydraulic gradients. Ecology, 83(7), 1792–1807.

    Article  Google Scholar 

  • Lamouroux, N., & Souchon, Y. (2002). Simple predictions of instream habitat model outputs for fish guilds in large streams. Freshwater Biology, 47, 1531–1542.

    Article  Google Scholar 

  • Lenhart, C. F., Brooks, K. N., Heneley, D., & Magner, J. A. (2009). Spatial and temporal variation in suspended sediment, organic matter, and turbidity in a Minnesota prairie river. Environmental Monitoring & Assessment, 165(1–4), 435–447.

    Google Scholar 

  • Lisle, T. E., & Hilton, S. (1992). The volume of fine sediment in pools: an index of sediment supply in gravel-bed streams. Water Resources Bulletin, 28(3), 371–383.

    Google Scholar 

  • Lohr, S. C., & Fausch, K. D. (1997). Multiscale analysis of natural variability in stream fish assemblages of a western Great Plains watershed. Copeia, 4, 706–724.

    Article  Google Scholar 

  • Magner, J. A., & Brooks, K. N. (2008). Integrating sentinel watershed-systems into the monitoring and assessment of Minnesota’s (USA) waters quality. Environmental Monitoring & Assessment, 138, 149–158.

    Article  CAS  Google Scholar 

  • McCune, B., & Grace, J. B. (2002). Analysis of Ecological Communities. MjM Software Design, Gleneden Beach Oregon, USA.

    Google Scholar 

  • McCune, B., & Mefford, M. J. (1999). PC-ORD. Multivariate Analysis of Ecological Data. Version 4, MjM Software Design, Gleneden Beach Oregon, USA.

    Google Scholar 

  • Newall, P. R., & Magnuson, J. J. (1999). The importance of ecoregion versus drainage area on fish distributions in the St. Croix River and its Wisconsin tributaries. Environmental Biology of Fishes, 55, 245–254.

    Article  Google Scholar 

  • Newcombe, C. P. (2003). Impact assessment model for clear water fishes exposed to excessively cloudy water. Journal of the American Water Resources Association, 39(3), 529–544.

    Article  Google Scholar 

  • Newcombe, C. P., & Jensen, J. O. T. (1996). Channel suspended sediment and fisheries: a synthesis for quantitative assessment of risk and impact. North American Journal of Fisheries Management, 16(4), 693–719.

    Article  Google Scholar 

  • Nietch, C. T., Borst, M., & Schubauer-Berigan, J. P. (2005). Risk management of sediment stress: A framework for sediment risk management research. Environmental Management, 36(2), 175–194.

    Article  Google Scholar 

  • Pasternack, G. B., Wang, C. L., & Merz, J. E. (2004). Application of a 2D hydrodynamic model to design of reach-scale spawning gravel replenishment on the Mokelumme River, California. River Research & Applications, 20, 205–225.

    Article  Google Scholar 

  • Pegg, M. A., & Pierce, C. L. (2002). Classification of reaches in the Missouri and Lower Yellowstone Rivers based on flow characteristics. River Research & Applications, 18, 31–42.

    Article  Google Scholar 

  • Poff, N. L. (1997). Landscape filters and species traits: Towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society, 16(2), 391–409.

    Article  Google Scholar 

  • Poff, N. L., Olden, J. D., Vieira, N. K. M., Finn, D. S., Simmons, M. P., & Kondratieff, B. C. (2006). Functional trait niches of North American lotic insects: Traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society, 25(4), 730–755.

    Article  Google Scholar 

  • Poff, N. L., & Ward, J. V. (1989). Implications of streamflow variability and predictability for lotic community structure: A regional analysis of streamflow patterns. Canadian Journal of Fisheries & Aquatic Sciences, 46, 1805–1817.

    Article  Google Scholar 

  • Pringle, C. M., Naiman, R. J., Bretschko, G., Karr, J. R., Oswood, M. W., Webster, J. R., et al. (1988). Patch dynamics in lotic systems: the stream as a mosaic. Journal of the North American Benthological Society, 7(4), 503–524.

    Article  Google Scholar 

  • Rabeni, C. F., & Smale, M. A. (1995). Effects of siltation on stream fishes and the potential mitigating role of the buffering riparian zone. Hydrobiologia, 303, 211–219.

    Article  Google Scholar 

  • Rahel, F. J., & Hubert, W. A. (1991). Fish assemblages and habitat gradient in a Rocky Mountain-Great Plains stream: Biotic zonation and additive patterns of community change. Transactions of the American Fisheries Society, 120, 319–332.

    Article  Google Scholar 

  • Rahel, F. J., & Thel, L. A. (2004). Plains topminnow (Fundulus sciadicus): A Technical Conservation Assessment, USDA Forest Service, RM Region. http://www.fs.fed.us/r2/projects/scp/assessments/plainstopminnow.pdf. Accessed 18 Feb. 2009.

  • Rashleigh, B. (2004). Relation of environmental characteristics to fish assemblages in the Upper French Broad River Basin, North Carolina. Environmental Monitoring and Assessment, 93, 139–156.

    Article  Google Scholar 

  • Richards, C., Haro, R. J., Johnson, L. B., & Host, G. E. (1997). Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology, 37, 219–230.

    Article  Google Scholar 

  • Schlosser, I. J. (1990). Environmental variation, life history attributes, and community structure in stream fishes: implications for environmental management. Environmental Management, 14, 651–628.

    Article  Google Scholar 

  • Schlosser, I. J. (1995). Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia, 303, 71–81.

    Article  Google Scholar 

  • Schwartz, J. S. (1991). Influence of Geomorphology and Land Use on Distribution and Abundance of Salmonids in a Coastal Oregon Basin. MS Thesis, Oregon State University, Corvallis.

  • Schwartz, J. S. (2002). Stream Habitat Characterized by Stage-specific Flows and Three-dimensional Geomorphological Complexity: Development of Ecological Criteria for Stream Restoration Design. PhD Dissertation, University of Illinois, Urbana.

  • Schwartz, J. S., Dahle, M., & Robinson, R. B. (2008). Concentration-frequency-duration curves for stream turbidity: Possibilities for use assessing biological impairment. Journal of the American Water Resources Association, 44(4), 879–886.

    Article  Google Scholar 

  • Schwartz, J. S., & Herricks, E. E. (2005). Fish use of stage-specific fluvial habitats as refuge patches during a flood in a low-gradient Illinois stream. Canadian Journal of Fisheries & Aquatic Sciences, 62, 1540–1552.

    Article  Google Scholar 

  • Schwartz, J. S., & Herricks, E. E. (2007). Evaluation of pool-riffle naturalization structures on habitat complexity and the fish community in an urban Illinois stream. River Research and Applications, 23, 451–465.

    Article  Google Scholar 

  • Schwartz, J. S., & Herricks, E. E. (2008). ‘Fish use of ecohydraulic-based mesohabitat units in a low-gradient Illinois stream: implications for stream restoration. Aquatic Conservation: Marine and Freshwater Ecosystems, 18, 852–866. doi:10.1002/aqc.905.

    Article  Google Scholar 

  • Sear, D. A. (1996). Sediment transport processes in pool-riffle sequences. Earth Surface Processes and Landforms, 21, 241–262.

    Article  CAS  Google Scholar 

  • Servizi, J. A., & Martens, D. W. (1992). Sublethal responses of coho salmon (Oncorhynchus kisutch) to suspended sediments. Canadian J. Fisheries & Aquatic Sciences, 49, 1389–1395.

    Article  Google Scholar 

  • Simberloff, D., & Dayan, T. (1991). The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics, 22, 115–143.

    Article  Google Scholar 

  • Simon, A. (1989). A model of channel response in disturbed alluvial channels. Earth Surface Processes and Landforms, 14(1), 11–26.

    Article  Google Scholar 

  • Simon, A. (2008). Fine-sediment loadings to Lake Tahoe. Journal of the American Water Resources Association, 44(3), 618–639.

    Article  Google Scholar 

  • Simon, A., & Darby, S. E. (1999). The nature and significance of incised river channels. In S. E. Darby, & A. Simon (Eds.), Incised Rivers channels: Processes, forms, engineering, and management (pp. 3–18). UK: John Wiley and Sons.

    Google Scholar 

  • Simon, A., Heins, A., & Dickerson, W. (2004). Suspended-sediment transport rates at the 1.5-year recurrence interval for ecoregions of the United States: Transport conditions at the bankfull and effective discharge? Geomorphology, 58, 243–262.

    Article  Google Scholar 

  • Simon, A., & Klimetz, L. (2008). Magnitude, frequency, and duration relations for suspended sediment in stable (“reference”) southeastern streams. Journal of the American Water Resources Association, 44(5), 1270–1283.

    Article  Google Scholar 

  • Simon, A., Klimetz, L., & Schwartz, J. S. (2009). Characterization of “Reference” suspended-sediment transport and bed material conditions for selected ecoregions in EPA Region VIII: The mountains and plains. USDA Agricultural Research Service, National Sedimentation Laboratory, Technical Report 61, April 2009.

  • Simon, A., & Rinaldi, M. (2000). Channel instability in the loess area of the Midwestern United States. Journal of the American Water Resources Association, 36(1), 138–150.

    Article  Google Scholar 

  • Smith, P. W. (1979). The fishes of illinois. Urbana: University of Illinois Press, p. 314.

    Google Scholar 

  • Smith, S. M., & Prestegaard, K. L. (2005). Hydraulic performance of a morphology-based stream channel design. Water Resources Research, 41, W11413.

    Article  Google Scholar 

  • Suen, J. P., & Herricks, E. E. (2006). Investigating the cause of fish community change in the Dahan River (Taiwan) using an autecology matrix. Hydrobiologia, 568, 317–330.

    Article  Google Scholar 

  • Sutherland, A. B., Meyer, J. L., & Gardiner, E. P. (2002). Effects of land cover on sediment regime and fish assemblage structure in four southern Appalachian streams. Freshwater Biology, 47, 1791–1805.

    Article  Google Scholar 

  • Thoms, M. C. (2003). Floodplain-river ecosystems: Lateral connections and the implications of human interference. Geomorphology, 56, 335–349.

    Article  Google Scholar 

  • Thorp, J. H., Thorns, M. C., & Delong, M. D. (2006). The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications, 22, 123–147.

    Article  Google Scholar 

  • Tomanova, S., Moya, N., & Oberdorff, T. (2008). Using macroinvertebrate biological traits for assessing biotic integrity of neotrophical streams. River Research and Applications, 24, 1230–1239.

    Article  Google Scholar 

  • Tong, S. T. Y. (2001). An integrated exploratory approach to examining the relationships of environmental stressors and fish responses. Journal of Aquatic Ecosystem Stress and Recovery, 9, 1–19.

    Article  Google Scholar 

  • Townsend, C. R., & Riley, R. H. (1999). Assessment of river health: Accounting for perturbation pathways in physical and ecological space. Freshwater Biology, 41, 393–405.

    Article  Google Scholar 

  • Tullos, D. D., Penrose, D. L., Jennings, G. D., & Cope, W. G. (2009). Analysis of functional traits in reconfigured channels: Implications for the bioassessment and disturbance of river restoration. Journal of the North American Benthological Society, 28(1), 80–92.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (1996). Biological criteria: Technical document for streams and small rivers, EPA-822-B-96–001, Washington: USEPA, Office of Water.

    Google Scholar 

  • U.S. Environmental Protection Agency (1999). Protocols for developing sediment TMDLs, EPA-841-B-99–004, Washington: USEPA, Office of Water.

    Google Scholar 

  • U.S. Environmental Protection Agency (2000). Stressor identification guidance document, EPA/822/B-00/025, Washington: USEPA, Office of Research and Development.

    Google Scholar 

  • U.S. Environmental Protection Agency (2003). Strategy for water quality standards and criteria: Setting priorities to strengthen the foundation for protecting and restoring the nation’s waters, EPA-823-R-03–010. Washington: USEPA, Office of Water.

    Google Scholar 

  • U.S. Environmental Protection Agency (2006). Framework for developing Suspended and Bedded Sediments (SABS) water quality criteria, EPA-822-R-06–001. Washington: USEPA, Office of Water, Office of Research and Development.

    Google Scholar 

  • Vadas, R. L., & Orth, D. J. (2000). Habitat use of fish communities in a Virginia stream system. Environmental Biology of Fishes, 59, 253–269.

    Article  Google Scholar 

  • Walters, D. M., Leigh, D. S., & Bearden, A. B. (2003). Urbanization, sedimentation, and the homogenization of fish assemblages in the Etowah River Basin, USA. Hydrobiologia, 494, 5–10.

    Article  Google Scholar 

  • Waters, T. F. (1995). Sediment in streams, sources, biological effects and control. American Fisheries Society Monograph, 7, 251, Bethesda, Maryland.

    Google Scholar 

  • Welker, T. L., & Scarnecchia, D. L. (2003). Differences in species composition and feeding ecology of catostomid fishes in two distinct segments of the Missouri River, North Dakota, U.S.A. Environmental Biology of Fishes, 68, 129–141.

    Article  Google Scholar 

  • Welker, T. L., & Scarnecchia, D. L. (2004). Habitat use and population structure of four native minnows (family Cyprinidae) in the upper Missouri and lower Yellowstone rivers, North Dakota (USA). Ecology of Freshwater Fish, 13, 8–22.

    Article  Google Scholar 

  • Wichert, G. A., & Rapport, D. J. (1998). Fish community structure as a measure of degradation and rehabilitation of riparian systems in an agricultural drainage basin. Environmental Management, 22(3), 425–443.

    Article  Google Scholar 

  • Wilson, J. B. (1999). Guilds, functional types and ecological groups. Oikos, 86, 507–522.

    Article  Google Scholar 

  • Wilzbach, M. A. (1985). Relative roles of food abundance and cover in determining the habitat distribution of stream-dwelling cutthroat trout (Salmo clarki). Canadian Journal of Fisheries and Aquatic Sciences, 42, 1668–1672.

    Article  Google Scholar 

  • Wood, P. J., & Armitage, P. D. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management, 28, 255–266.

    Google Scholar 

  • Yuan, L. L. (2010). Estimating the effects of excess nutrients on stream invertebrates from observational data. Ecological Applications, 20(1), 110–125.

    Article  Google Scholar 

  • Yuan, L. L., & Norton, S. B. (2004). Assessing the relative severity of stressors at a watershed scale. Environmental Monitoring & Assessment, 98, 323–349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Schwartz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 91 kb)

(XLS 66 kb)

(XLS 37 kb)

(XLS 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, J.S., Simon, A. & Klimetz, L. Use of fish functional traits to associate in-stream suspended sediment transport metrics with biological impairment. Environ Monit Assess 179, 347–369 (2011). https://doi.org/10.1007/s10661-010-1741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1741-8

Keywords

Navigation