Skip to main content
Log in

Total suspended matter observation in the Pearl River estuary from in situ and MERIS data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Based on the cruise data collected in the Pearl River estuary (PRE) in May 2008, an empirical two-band model by using the ratio of R rs at 629 and 671 nm was established to retrieve total suspended matter (TSM) concentration with the determination coefficient (R2) of 0.854, mean relative error (MRE) of 7.483%, and root-mean-square error (RMSE) of 1.295 mg L − 1. To match with medium resolution imaging spectrometer (MERIS) bands, in situ remote sensing reflectance was re-sampled to the bandwidth of 10 nm. The relationship between TSM and re-sampled R rs at 620 nm (MERIS band 6) and 665 nm (MERIS band 7) are obtained (R2 = 0.748, RMSE = 1.697 mg L − 1, MRE = 8.785%, n = 13). Additionally, to map the spatial distribution of TSM in the PRE, MERIS level_1B data were calibrated using a multiple linear regression model based on in situ R rs. Another dataset collected in the PRE in January 2004 was used to validate the two-band model and also applied to map TSM distribution from MERIS image. The comparison between measured TSM values and modeled ones showed satisfactory results (R2 = 0.753, MRE = 22.199%, and RMSE = 2.603 mg L − 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoine, A., & Morel, A. (1999). A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): Principle and implementation for atmospheric carrying various aerosols including absorbing ones. International Journal of Remote Sensing, 20(9), 1875–1916.

    Article  Google Scholar 

  • Austin, R. W. (1974). Inherent spectral radiance signatures of the ocean surface. In Ocean color analysis. Ref. 74–10, Scripps Institution of Oceanography, La Jolla, CA, USA.

  • Becker, B. L., Lusch, D. P., & Qi, J. (2005). Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second-derivative analysis. Remote Sensing of Environment, 2, 238–248.

    Article  Google Scholar 

  • Buckton, D., O’Mongain, E., & Danaher, S. (1999). The use of neural networks for the estimation of oceanic consituents based on MERIS instrument. International Journal of Remote Sensing, 20(9), 1841–1851.

    Article  Google Scholar 

  • Castaing, P., Froidefond, J. M., Lazure, P., Weber, O., Prud’homme, R., & Jouanneau, J. M. (1999). Relationship between hydrology and seasonal distribution of suspended sediments on the continental shelf of the Bay of Biscay. Deep-Sea Research II, 46, 1979–2001.

    Article  Google Scholar 

  • Chen, X., Chen, Y., & Lai, G. (2003). Modelinig of the transport of suspended solids in the Estuary of Zhujiang River. Acta Oceanologica Sinica, 2, 120–127.

    Google Scholar 

  • Chen, X., Yuan, Z., Li, Y., & Wei, Y. (2005). Spatial and temporal dynamics of suspended sediment concentration in the Pearl River Estuary based on remote sensing. Geomatics and Information Science of Wuhan University, 8, 677–681.

    Google Scholar 

  • Curran, P. J., & Novo, E. M. M. (1988). The relationship between suspended sediment concentration and remotely sensed spectral radiance: A review. Journal of Coastal Research, 4, 351–368.

    Google Scholar 

  • D’Sa, E. J., Miller, R. L., & Castillo, C. (2006). Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front. Applied Optics, 45, 7410–7428.

    Article  Google Scholar 

  • D’Sa, E. J., Miller, R. L., & McKee, B. A. (2007). Suspended particulate matter dynamics in coastal waters from ocean color: Application to the northern Gulf of Mexico. Geophysical Research Letters, 34, 1–6.

    Google Scholar 

  • Dekker, A. G., Vos, R. J., & Peters, S. W. M. (2001). Comparison of remote sensing data model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. The Science of the Total Environment, 268, 197–214.

    Article  CAS  Google Scholar 

  • Doerffer, R., Sorensen, K., & Aiken, J. (1999). MERIS potential for coastal zone applications. International Journal of Remote Sensing, 9, 1809–1818.

    Article  Google Scholar 

  • Doxaran, D., Cherukuru, R. C. N., & Lavender, S. J. (2005). Use of reflectance band ratios to estimate suspended and dissolved matter concentrations in estuarine waters. International Journal of Remote Sensing, 26, 1763–1769.

    Article  Google Scholar 

  • Doxaran, D., Froidefond, J. M., & Castaing, P. (2002). A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters. International Journal of Remote Sensing, 23(23), 5079–5085.

    Article  Google Scholar 

  • Flink, P., Lindell, T., & Öslund, C. (2001). Statistical analysis of hyperspectral data from two Swedish lakes. The Science of the Total Environment, 268, 155–169.

    Article  CAS  Google Scholar 

  • Froidefond, J. M., Castaing, P., & Jouanneau, J. M. (1996). Distribution of suspended matter in a coastal upwelling area. Satellite data and in situ measurements. Journal of Marine Systems, 8, 91–105.

    Article  Google Scholar 

  • Gitelson, A. A., Schalles, J. F., & Hladik, C. M. (2007). Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sensing of Environment, 109, 464–472.

    Article  Google Scholar 

  • Gower, J., King, S., Borstad, G., & Brown, L. (2005). Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. International Journal of Remote Sensing, 9, 2005–2012.

    Google Scholar 

  • Keiner, L. E., & Yan, X. (1998). A neural network model for estimating sea surface chlorophyll and sediments form thematic mapper imagery. Remote Sensing of Environment, 66, 153–165.

    Article  Google Scholar 

  • Li, X. (1992). An united equation for remote sensing quantitative analysis of suspended sediment and its application at Zhujiang River estuary. Journal of Remote Sensing, 7(2), 106–114.

    Google Scholar 

  • Liu, F., Chen, C., Tang, S., & Liu, D. (2009). A piecewise algorithm for retrieval of suspended sediment concentration based on in situ spectral data by MERIS in Zhujiang River estuary. Journal of Tropical oceanography, 28(2), 9–14.

    Google Scholar 

  • Liu, X., Deng, R., & Peng, X. (2005). An integrated model for quantitative remote sensing measurement of suspended sediment and its application in the Pearl River estuary. Acta Scientiarum Naturalium Universitatis Sunyatseni, 44(3), 109–113.

    Google Scholar 

  • Lv, H., Li, X., & Jiang, N. (2005). Estimation of suspended solids concentration in Lake Taihu using sepctral reflectance and simulated MERIS. Journal of Lake Sciences, 17(2), 104–109.

    Google Scholar 

  • Miller, R. L., & McKee, B. A. (2004). Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sensing of Environment, 93, 259–266.

    Article  Google Scholar 

  • Moore, G. F., Aiken, J., & Lavender, S. J. (1999). The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in case II waters: application toMERIS. International Journal of Remote Sensing, 20, 1713–1733.

    Article  Google Scholar 

  • Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color. Limnology and Oceanography, 22, 709–722.

    Article  Google Scholar 

  • Mueller, J. L., Fargion, G. S., & McClain, C. R. (2003). Ocean optics protocols for satellite ocean color sensor validation, Revision 4, Vols 1–4 (Maryland: Greenbelt).

  • Nechad, B., Cauwer, V., Park, Y., & Ruddick, K. G. (2003), Suspended Particulate Matter (SPM) mapping from MERIS imagery. Calibration of a regional algorithm for the Belgian coastal waters. In Proceedings of the MERIS Users workshop, Frascati: European Space Agency SP, pp 549.

  • Rast, M., Bezy, J. L., & Bruzzi, S. (1999). The ESA medium resolution imaging spectrometer MERIS—a review of the instrument and its mission. International Journal of Remote Sensing, 20(9), 1681–1702.

    Article  Google Scholar 

  • Roberts, D. A., Yamaguchi, Y., & Lyon, R. J. P. (1985). Calibration of Airborne Imaging Spectrometer data to percent reflectance using field measurements: In Proceedings, Nineteenth International Symposium on Remote Sensing of Environment, Ann Arbor, MI, October 21–25, 1985.

  • Robinson, M. C., Morris, K. P., & Dyer, K. R. (1998). Deriving fluxes of suspended particulate matter in the Humber Estuary, UK, using airborne remote sensing. Marine Pollution Bulletin, 37, 155–163.

    Article  CAS  Google Scholar 

  • Ruddick, K. G., Park, Y., & Nechad, B. (2003). MERIS imagery of Belgian coastal waters: Mapping of suspended particulate matter and chlorophyll-a. In Proceedings of the MERIS User Workshop, Frascati: European Space Agency SP, pp 549.

  • Ruiz, A., Franco, J., & Orive, E. (1994). Suspended particulate matter dynamics in the shallow mesotidal Urdaibai Estuary (Bay of Biscay, Spain). Netherlands Journal of Aquatic Geology, 28(3–4), 309–316.

    Article  CAS  Google Scholar 

  • Schroeder, T., Behnert, I., Schaale, M., Fischer, J., & Doerffer, R. (2007). Atmospheric correction algorithm for MERIS above case-2 waters. International Journal of Remote Sensing, 28(7), 1469–1486.

    Article  Google Scholar 

  • Tassan, S. (1994). Local algorithm using SeaWiFS data for retrieval of phytoplankton, pigments, suspended sediment and yellow substance in coastal waters. Applied Optics, 33(12), 2369–2378.

    Article  CAS  Google Scholar 

  • Teodoro, A. C., Veloso-Gomes, F., & Goncalves, H. (2007). Retrieving TSM concentration from multiplespectral satellite data by multiple regression and artificial neural networks. IEEE Transactions on Geoscience and Remote Sensing, 5, 1342–1350.

    Article  Google Scholar 

  • Walker, N. D., & Hammack, A. B. (2000). Impacts of winter storms on circulation and sediment transport: Atchafalaya-Vermillion Bay Region, Louisiana, USA. Journal of Coastal Research, 16, 996–1010.

    Google Scholar 

  • Whitlock, C. H., Poole, L. R., Usry, J., Houghton, W. M., Witte, W. G., Morris, W. D., et al. (1981). Comparison of reflectance with backscatter and absorption parameters for turbid waters. Applied Optics, 20, 517–522.

    Article  CAS  Google Scholar 

  • Zhang, Y., Pulliainen, J., Koponen, S., & Hallikainen, M. (2002). Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sensing of Environment, 81, 327–336.

    Article  Google Scholar 

  • Zhang, Y., Pulliainen, J., Koponen, S., & Hallikainen, M. (2003). Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland. IEEE Transactions on Geoscience and Remote Sensing, 41, 622–629.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, H., Zhang, Y. Total suspended matter observation in the Pearl River estuary from in situ and MERIS data. Environ Monit Assess 177, 563–574 (2011). https://doi.org/10.1007/s10661-010-1657-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1657-3

Keywords

Navigation