Skip to main content

Advertisement

Log in

Biochemical changes in plant leaves as a biomarker of pollution due to anthropogenic activity

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The air pollution due to anthropogenic activities seriously affected human life, vegetation, and heritage as well. The vegetation cover in and around the city mitigates the air pollution by acting as a sink for pollution. An attempt was made to evaluate biochemical changes occurred in four selected plant species, namely Azadirachta indica, Mangifera indica, Delonix regia, and Cassia fistula of residential, commercial, and industrial areas of Nagpur city in India. It was observed that the correlated values of air pollutants and plant leaves characteristics alter foliar biochemical features (i.e., chlorophyll and ascorbic acid content, pH and relative water content) of plants due to air pollution. The changes in air pollution tolerance index of plants was also estimated which revealed that these plants can be used as a biomarker of air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agbaire, P. O. (2009). Air pollution tolerance indices (APTI) of some plants around Erhoike-Kokori oil exploration site of Delta State, Nigeria. International Journal of Physical Sciences, 4, 366–368.

    CAS  Google Scholar 

  • Bobrov, R. (1995). The leaf structure of Poa annua with observations on its smog sensitivity in Los Angeles country. American Journal of Botany, 4, 467–474.

    Google Scholar 

  • Cheng, S. Y., Li, J. B., Feng, B., Jin, Y. Q., & Hao, R. X. (2006). A Gaussian-box modelling approach for urban air quality management in a Northern Chinese City – II. Pollutant emission abatement. Water Air & Soil Pollution, 178, 37–57.

    Article  Google Scholar 

  • Cracker, L. E. (1972). Influence of ozone on RNA and protein content of Lemna minor L. Environmental Pollution, 3, 319–323.

    Article  Google Scholar 

  • Crittenden, P. D., & Read, D. J. (1979). The effects of air pollution on plant growth with special reference to sulphur dioxide III. Growth studies with Lolium multiforum Linn. Ad Dactylis glomerata L. New Phytologist, 83, 645–651.

    Article  CAS  Google Scholar 

  • Dugger, W. M., Taylor, O. C., Cardiff, E., & Thomoson, C. R. (1962). Stomatal action in plants as related to photochemical oxidants. Plant Physiology, 37, 487–491.

    Article  CAS  Google Scholar 

  • Forooq, M., & Beg, M. U. (1980). Effect of aqueous sulphur dioxide on the membrane permeability of common Indian tree leaves. New Botanist, 7, 213–217.

    Google Scholar 

  • Garg, K. K., & Varshney, C. K. (1980). Effect of air pollution in the leaf epidermis at the submicroscopic level. Experientia, 36, 1364–1366.

    Article  Google Scholar 

  • Gomez, A. A., & Gomez, A. (1984). Statistical procedures for agricultural research (pp. 7–84). New York: Wiley.

    Google Scholar 

  • Gupta, G., & Sabratnam, S. (1988). Reduction in soybean yield after a brief exposure to nitrogen dioxide. Journal of Agricultural Science, 110, 399–400.

    Article  Google Scholar 

  • Heumann, H. G. (2002). Ultrastructural localization of zinc in zinc-tolerant Armeria maritime spp. halleri by autometallography. Journal of Plant Physiology, 159(2), 191–203.

    Article  CAS  Google Scholar 

  • Joshi, P. C., & Chauhan, A. (2008). Performance of locally grown rice plants (Oryza sativa L.) exposed to air pollutants in a rapidly growing industrial area of district Haridwar, Uttarakhand, India. Life Science Journal, 5, 57–61.

    Google Scholar 

  • Joshi, P.C., & Swami, A. (2007). Physiological responses of some tree species under roadside automobile pollution stress around city of Haridwar, India. Environmentalist, 27, 365–374.

    Article  Google Scholar 

  • Katz, M. (1997). Methods for air sampling and analysis (2nd ed.). Washington DC: APHA.

    Google Scholar 

  • Keller, T. (1986). The electrical conductivity of Norway spruce needle diffusate as affected by air pollutants. Tree Physiology, 1, 85–94.

    CAS  Google Scholar 

  • Khan, M. R., & Khan, M. W. (1991). Impact of air pollution emanating from a thermal power plant on tomato. Journal of Indian Botanica Society, 70, 239–244.

    CAS  Google Scholar 

  • Kumar, G. S., & Dubey, P. S. (1998). Differential response and detoxifying mechanism of Cassia siamea Lam. and Dalbergia sissoo Roxb of different ages to SO2 treatment. Journal of Environmental Biology, 9(3), 243–249.

    Google Scholar 

  • Lee, T. T. (1965). Sugar content and stomatal width as related to O3 injury in tobacco leaves. Canadian Journal of Botany, 43, 677–685.

    Article  CAS  Google Scholar 

  • Malhotra, S. S., & Hocking, D. (1976). Biochemical and cytological effects of sulphur dioxide on plant metabolism. New Phytoogist, 76, 227–237.

    Article  CAS  Google Scholar 

  • Mishra, L. C. (1982). Effect of environmental pollution on the morphology and leaf epidermis on Commelina benghalensis Linn. Environmental Pollution (Series A), 8, 281–284.

    Article  Google Scholar 

  • Ninave, S. Y., Chaudhari, P. R., Gajghate, D. G., & Tarar, J. T. (2001). Foliar biochemical features of plants as indicators of air pollution. Bulletin of Environmental Contamination and Toxicology, 67, 133–140.

    Article  CAS  Google Scholar 

  • Noland, T. L., & Kozlowski, T. T. (1979). Effect of SO2 on stomatal aperture and sulfur uptake of wood angiosperm seedlings. Canadian Journal of Forest Research, 9, 57–62.

    Article  CAS  Google Scholar 

  • Psaras, G. K., & Christodoulakis, N. S. (1987). Air pollution affects on the ultrastructure of Phlomis fruticosa mesophyll cells. Bulletin of Environmental Contamination and Toxicology, 38(4), 610–617.

    Article  CAS  Google Scholar 

  • Raza, S. N., Vijaykumari, N., & Murthy, M. S. (1985). Air pollution tolerance index of certain plants of hyderabad. In Symp Biomonitoring State of Environment (pp. 243–245). New Delhi: Indian National Science Academy.

    Google Scholar 

  • Santosh Kumar, P., & Tripathi, B. D. (2008). Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. Journal of Environmental Quality, 37, 865–870.

    Article  Google Scholar 

  • Sharma, G. K. (1997). Cuticular feature as indicator of environmental pollution. Environmental Pollution, 5, 587–293.

    Google Scholar 

  • Singh, A. (1977). Practical plant physiology (pp. 266). New Delhi: Kalyani.

    Google Scholar 

  • Singh, S. K., & Rao, D. N. (1983). Evaluation of plants for their tolerance to air pollution. In Proc symp on air pollution control held at IIT Delhi, 1983 (pp. 218–224).

  • Singh, N., Singh, S. N., Srivastava, K., Yunus, M., Ahmad, K. J., Sharma, S. C., et al. (1990). Relative sensitivity and tolerance of some Gladiolus cultivars to sulphur dioxide. Annals of Botany, 65, 41–44.

    CAS  Google Scholar 

  • Smith, W. H., & Bochinger, L. S. (1979). Capability of metropolitan trees to reduce atmospheric contaminants. In F. S. Santamour Jr. & H. D. Gnehold, Little (Eds.), Better trees for metropolitan landscape (pp. 4–59). U.S. Forest Serv Gen Tech Rep.

  • Smith, P. A., & Ravenm, J. A. (1979). Intercellular pH and its regulation. Annual Reviews of Plant Physiology, 30, 289–311.

    Article  CAS  Google Scholar 

  • Solberg, R. A., & Adams D. F. (1950). Histological responses of some plant leaves of HF and SO2. American Journal of Botany, 43, 755–766.

    Article  Google Scholar 

  • Tausz, M., Muller, M., Dekok, L. J., & Grill, D. (1998). Uptake and metabolism of oxidized and reduced sulfur pollutants by spruce trees. In L. J. Dekok & I. Stulen (Eds.), Response of plant metabolism to air pollution and global change (pp. 457–460). Leiden: Backhuys.

    Google Scholar 

  • Velikova, V., Yardanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science, 151(1), 59–66.

    Article  CAS  Google Scholar 

  • Wellburn, A. R. (1982). Effects of SO2 and NO2 in metabolic functions. In M. H. Unsworth & D. P. Ormod (Eds.), Effects of gaseous air pollution in agriculture and horticulture 1 (pp. 167–186). London: Butterworths.

    Google Scholar 

  • Wellburn, A. R., Higginson, C., Robinson, D., & Walmsley, C. (1981). Biochemical explanations of more than additive inhibitory effects of low atmospheric levels of sulphur dioxide plus nitrogen dioxide upon plants. New Phytologist, 88, 223–237.

    Article  CAS  Google Scholar 

  • Williams, A. J., & Banerjee, S. K. (1995). Effect of thermal power plant emissions on the metabolic activities of Mangifera indica and Shorea robusta. Environmental Ecologyt, 13, 914–919.

    Google Scholar 

  • Yu, S. W. (1998). Plant resistance to sulfur dioxide injury. Perspectives in environmental botany (Vol. 2, pp. 251–282). New Delhi: Today and Tomorrow’s Printers and Publishers.

    Google Scholar 

  • Yunus, M., Ahmad, K. J., & Gale R. (1979). Air pollutants and epidermal traits in Ricinus communis L. Environmental Pollution, 20, 189–198.

    Article  Google Scholar 

  • Ziegler, I. (1992). Effects of SO2 on the activity of ribulose 1,5-diphosphate carboxylase in isolated spinach chloroplasts. Planta, 103, 155–163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. R. Thawale or Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thawale, P.R., Satheesh Babu, S., Wakode, R.R. et al. Biochemical changes in plant leaves as a biomarker of pollution due to anthropogenic activity. Environ Monit Assess 177, 527–535 (2011). https://doi.org/10.1007/s10661-010-1653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1653-7

Keywords

Navigation